产品|公司|采购|资讯

  • $item.Title

SynBBB血脑屏障模型芯片

参考价面议
具体成交价以合同协议为准
  • 公司名称世联博研(北京)科技有限公司
  • 品       牌
  • 型       号
  • 所  在  地北京市
  • 厂商性质其他
  • 更新时间2024/5/23 11:07:47
  • 访问次数163
产品标签:

在线询价收藏产品 点击查看电话

联系我们时请说明是 智能制造网 上看到的信息,谢谢!

世联博研(北京)科技有限公司(Bio Excellence International Tech Co.,Ltd),简称世联博研(Bioexcellence),是一家国际前沿生命科学设备、耗材、试剂代理销售与技术服务科技企业,于2010年成立于北京。 世联博研(Bioexcellence)意即联合世界生命科学界有秀的博士研究生,通过他们向厂商、用户传递专业、实效的生命科学产品与服务,把包括生物力学、3D生物打印、再生医学、生物医学工程、微流控&组织器官芯片、细胞微环境在内的等生命科学国际前沿产品与技术引进中国,为中国科研学者提供专业、实效的仪器设备、耗材、试剂以及科研技术服务一站式解决方案。 世联博研有10多年的国际前沿科研仪器代理销售经验,已成功与国际生命科学领域近50多家的科研产品制造商以及1300多家中国三甲医院、2100多家科研院所、600多家高校、400多家检验检疫等用户单位建立了良好诚信的长期合作关系,正以不断引进国际前沿生命科学领域科研产品、专业和规模化的营销渠道、高效安quan的国际联运、快捷的海关清关报关和专业人性化售前售后的服务模式,实现了国际厂家与中国科研用户的对接、落地实施,实现合作伙伴资源共享,共同发展,世联博研(Bioexcellence)是个开放热情的企业单位,热烈欢迎国内外相关单位人士洽谈、合作,共谋发展。世联博研业务范围:科研院所单位、生物医学科研高校、医院基础科研单位等。世联博研公司代理的品牌具有:1)近10年长期稳定的货源2)以生物力学、细胞力学、生物打印机、电纺丝、酶联斑点分析、细胞生物分子学、生物医学组织工程、生物材料学为主,兼顾其他相关产品线3)提供专业产品培训和销售培训4)良好的技术支持5)已成交老客户考证6)每年新增的货源。
测试仪
SynBBB3DѪ������ģ��оƬ��Ѫ��������֯ģ��оƬ��SynBBB3DBloodBrainBarrierModel
SynBBB血脑屏障模型芯片 产品信息
SynBBB 3DѪ������ģ��оƬ��Ѫ��������֯ģ��оƬ��SynBBB 3D Blood Brain Barrier Model,SynBBB 3D Model Kit��SynBBB 3D Model �C Assay Kits,SynBBB 3D Model Assay Kit SynBBB 3D Model Chip,SynBBB 3D Model Starter Kit

SynBBB 3DѪ������ģ��оƬ��SynBBB 3D Blood Brain Barrier Model,SynBBB 3D Model �C Assay Kits,SynBBB 3D Model Assay Kit SynBBB 3D Model Chip,SynBBB 3D Model Starter Kit

SynBBB 3D Blood Brain Barrier Model �C Real-time visualization of cellular and barrier functionality

SynVivo��SynBBB 3DѪ������ģ��ͨ��ģ�����Ѫ�����ϣ�BBB������Ƥϸ��ͨѶ������֯ϸ������֯��Ƭ���ؽ�����΢�����������յ�����Ƥϸ������������Transwell®ģ����wu��ʵ�֣�����SynBBBģ����ʹ��������������������ʵ�֡����ܱ仯���γɿ���ʹ��SynVivoϸ���迹������ͨ�������������������������仯�����в���������֯ϸ������Ƥϸ��֮����໥������SynBBB�����к����׹۲쵽�� Transwellģ�Ͳ�����ʵʱ��ʾ��Щϸ���໥���ã�������˽�BBB΢����������Ҫ��

SynBBB�ǿ���ʵ�����¹��ܵ�����BBBģ�ͣ�

׼ȷ������ѪҺ����ѧ��Ӧ��
ʵʱ���ӻ�ϸ�������Ϲ���
�������˳ɱ���ʱ��
�Ƚ����õ�Э��

BBBģ�͵�ʾ��ͼ����ǻ����ͨ������������Ѫ�ܣ���Ƥϸ���������������ǻ������ǻ��������������֯ϸ��������ϸ������ϸ������Ԫ������׽ṹʹѪ��ϸ������֯ϸ��֮����Խ���ͨѶ��

SynBBBϵͳ��һ���߶�ͨ�õ�ƽ̨�������ڵ��飺

�������ӵ��ף�ȷ���������ӵ��׵�ˮƽ��������BBB��С���պϵ��ף�claudins��occludins��
ת�˵��ף����������͹����쳣��Ѫ��������ת�˵��׵Ĺ��ܣ�����Pgp����
ҩ����͸�ԣ��������Ƽ���С���Ӵ���BBB��Ƥϸ����ʵʱ��͸�ԡ�
��֢���˽���֢��Ӧ��Ѫ�����ϵ��ڵ�DZ�ڻ��ơ�
ϸ��Ǩ�ƣ����ӻ�����������ϸ����BBB�е�ʵʱǨ�ơ�
��͸�Ա仯���������͹����쳣��Ѫ�����Ͻ��л����飬��������ʹ�л������
�񾭶��ԣ�������ѧ������������Լ���Ѫ������ϸ���Ķ������á�
������ѧ���о�����ϸ����Ѫ�����ϵ�Ӱ�졣
���������о����������Դӡ������� SynBBBģ�ͻ� TEER���ݡ� SynBBB�����н���ѡ��

SynBBB 3Dģ���׼����
�������Լ�����ʽ��������SynBBB���������all��������� ���ݸ����о����������Դ�SynBBBоƬ�ġ��������� TEER���ݡ������н���ѡ�� ����all�������������ӣ����ӣ���ͷ��ע������ ���Ź��߰����������������װ�ã�����SynBBB�������裩��ϸ���迹�����ǣ��ռ�SynBBB TEER����ֵ���裩��

�׼����ݺ�˵��

SynBBB Kits and Chips Basic BBB Assay Kit

Cat# 402001

Basic BBB Starter Kit

Cat# 402002

BBB-TEER Assay Kit

Cat# 402003

BBB-TEER Starter Kit

Cat# 402004

102005-SB Chips (3uM slit)  (10) ? ?
102015-SB Chips (3uM slit-Teer compatible) (10) ? ?
Pneumatic Primer and Adapter ? ?
Manifold (5 port) ? ?
Blunt Tip Needles 0.5�� long, 24ga (50) ? ? ? ?
Tygon Tubing 0.2�� ID x

0.6�� OD (100 ft)

? ? ? ?
1 mL Syringes (50) ? ? ? ?
Slide Clamps (25) ? ? ? ?
Impedance Analyzer ?
Electrodes (20)  ? ?

 

SynVivo used to create the first neonatal BBB model on a chip

Researchers at Temple University used the SynVivo® SynBBBTM cell-based in vitro assay platform to model the attributes and functions of the neonatal stage blood-brain barrier (BBB) [1]. The SynBBB model closely mimics the in vivo microenvironment including three-dimensional morphology, cellular interactions and flow characteristics on a microfluidic chip. This work marks the first dynamic in vitro neonatal BBB model that offers real time visualization and analysis and is suitable for studies of BBB function as well as screening of novel therapeutics.

��The work is important because studies of neonatal neuropathologies and development of appropriate therapeutics are hampered by a lack of relevant in vitro models of the neonatal blood-brain barrier,�� said Dr. Sudhir Deosarkar, the lead author of this paper.

In the SynBBB assay, which includes a tissue compartment and vascular channels placed side-by-side and separated by an engineered porous barrier, the researchers were able to co-culture neonatal rat brain endothelial cells and rat astrocytes under physiological conditions observed in vivo. The endothelial cells formed a full lumen and exhibited tight junction formation which increased under co-culture with astrocytes. The permeability of small molecules in the developed model was found to in excellent agreement with in vivo observations.

��The real-time visualization capabilities of the SynBBB co-culture platform allowed, for the first time, visualization of astrocyte end-feet and endothelial cell interactions in anin vitro model,�� said Prof. Mohammad Kiani who is the senior author of the paper. ��This is a unique capability and will help us to understand and develop therapeutics for several developmental disorders and diseases of the brain.��

The PLOS ONE paper shows that in contrast to transwell models, the SynBBB model exhibits significantly improved barrier characteristics similar to in vivo observations.

1A Novel Dynamic Neonatal Blood-Brain Barrier on a Chip. S. Deosarkar, B. Prabhakarpandian, B. Wang, J.B. Sheffield, B. Krynska, M. Kiani. PLOS ONE, 2015, DOI: 10.1371/journal.pone.0142725

The SynBBB 3D model has been validated in various BBB Assays

Mono-Culture Assays

Shear-induced endothelial cell tight junctions, which cannot be achieved in the Transwell® model, are easily achieved in the SynBBB assay using fluid perfusion. Formation of tight changes can be measured using biochemical or electrical analysis (assessing changes in electrical resistance) with the SynVivo Cell Impedance Analyzer.

Primary endothelial cells are cultured in the vascular channel under physiological fluid flow. Cells are stained for tight junction markers highlighting the increase under fluid flow compared to static conditions. The Cell Impedance Analyzer system is used to measure increases in Ohmic resistance (TEER), associated with the formation of tight junctions.

Top Left Panel: Phase Contrast imaging of brain endothelial cells cultured in the SynBBB model. Bottom Left Panel: Calcein AM and Ethidium homodimer-1 labeled brain endothelial cells indicating a highly viable population of cells in the SynBBB model. Right Panel: Plot highlighting the importance of flow on brain endothelial cells with increased TEER.

Co-Culture with Tissue Cells

Interactions between brain tissue cells and endothelial cells are readily visualized in the SynBBB assay. Transwell models do not allow real-time visualization of these cellular interactions, which are critical for understanding of the physiological environment.

Endothelial cells are cultured under flow in the vascular channel, and the tissue chamber is cultured with primary brain cells, such as astrocytes. Increases in Ohmic resistance across the barrier, measured with the Cell Impedance Analyzer, are associated with tight junction formation across the BBB. Endothelial cells co-cultured with astrocytes form significantly tighter cell junctions compared to mono-cultured endothelial cells.

Left Panel: CD-31 (green) stained endothelial cells and GFAP (red) stained astrocytes. All nucleus are stained with DAPI (blue). Right Panel: Plot highlighting increased TEER with co-culture of endothelial cells and astrocytes.

Real-Time Permeability Assays

Unlike BBB models which are arranged in top to bottom architecture (i.e., Transwell), small molecule transport can be assessed and quantified in real-time across the SynBBB system due to its side-by-side architecture.

A fluorescently-labeled drug molecule of interest is perfused through the vascular channels at physiological  flow rate. Real-time videos are acquired and analyzed to calculate the rate of permeability into the tissue chamber. Different rates of permeability is observed across the BBB due to tight junctions of endothelial cells.

Time-lapse imaging of permeability of small molecules across a tightly formed BBB.

Time-lapse imaging of permeability of small molecules across a leaky BBB.

Real-Time Tight Junction Modulation

SynBBB can be used to model inflammation responses. A pro-inflammatory compound, such as TNF-��, is added to mono-cultured endothelial cells to modulate the tight junctions, followed by a period of recovery under perfusion flow. Electrical resistance measurements provide a non-invasive method for real-time monitoring of tight junctions.

Modulation of Inflammation responses in SynBBB model. TNF-alpha induced leakiness in the BBB measured by changes in the resistance across the endothelial cells. Removal of TNF-alpha followed by media perfusion under physiological flow conditions enables recovery of the tight junction leading to increased tight junction formation. Static cells maintain a constant resistance due to lack of tight junctions.

SynBBB 3Dģ�ͨC�����׼�
��������Ʒ��10��оƬ����Ӣ���͹ܣ�25�������оߣ�50����ͷ��ͷ��50��1����ע�������� �����׼����������������װ�ã�����ϸ�����裩��ϸ���迹�����ǣ���������TEER���ã���


���ţ�402002Ʒ����SynBBB 3Dģ�������׼�������

���ţ�402004Ʒ����SynBBB 3Dģ�������׼���TEER

SynBBB 3Dģ�ͨC����Լ���
��������Ʒ��10��оƬ����Ӣ���͹ܣ�25�������оߣ�50����ͷ��ͷ��50��1����ע��������
���ţ�402001 SynBBB 3Dģ�Ͳⶨ�Լ��У��������ã�

���ţ�402003 SynBBB 3Dģ�Ͳⶨ�Լ��У�TEER���ã�

SynBBB 3Dģ�ͨCоƬ
���ţ�102005-SB SynBBB 3Dģ��оƬ���������ã�
���ţ�102015-SB SynBBB 3Dģ��оƬ��TEER���ã�

�ҹ�˾רע������ѧ�������ӡ������ҽѧ���̿��з���-10�꾭��֧��,
����������й���-Ӧ�þ���

在找 SynBBB血脑屏障模型芯片 产品的人还在看
返回首页 产品对比

提示

×

*您想获取产品的资料:

以上可多选,勾选其他,可自行输入要求

个人信息:

Copyright gkzhan.com , all rights reserved

智能制造网-工业4.0时代智能制造领域“互联网+”服务平台

对比栏