山东明基环保设备有限公司
初级会员 | 第10年

15963635951

当前位置:山东明基环保设备有限公司>>厌氧反应器>>IC反应器>> 四川省IC厌氧反应器

四川省IC厌氧反应器

参  考  价面议
具体成交价以合同协议为准

产品型号

品       牌

厂商性质生产商

所  在  地潍坊市

更新时间:2018-04-16 11:12:29浏览次数:720次

联系我时,请告知来自 智能制造网
同类优质产品更多>
四川省IC厌氧反应器的IC反应器内污泥浓,微生物量大,且存在内循环,传质,进水机负荷可超过普通厌氧反应器的3倍以上。抗冲击负荷能力强:处理低浓度废水(COD=2000~3000mg/L)时,反应器内循环流量可达进水量的2~3倍;处理高浓度废水(COD=10000~15000mg/L)时,内循环流量可达进水量的10~20倍。

四川省IC厌氧反应器

简介

    山东明基环保设备有限公司地处白浪河畔美丽的风筝之都————潍坊,是一个致力于和健康饮水行业的新兴企业。成立以来,明基环保体员工本着“以人为本,健康饮水,爱护环境,美丽家园”的企业宗旨。以“社会需求为营销方向”,坚持“做好客户售前售中和”的理念,真诚、务实的为客户解决问题,用可靠的质量和周到的巩固、扩大市场,整个企业中充满着崇尚科技、改革创新的氛。

工作原理:


  它相似由2UASB反应器串联而成。按功能划分,反应器由下而上共分为5个区:混合区、1厌氧区、2厌氧区、沉淀区和液分离区。
混合区:反应器底部进水、颗粒污泥和液分离区回流的泥水混合物效地在此区混合。
1厌氧区:混合区形成的泥水混合物进入该区,在高浓度污泥下,大部分机物转化为沼。混合液上升流和沼的剧烈扰动使该反应区内污泥呈膨胀和流化状态,加强了泥水表面接触,污泥由此而保持着高的活性。随着沼产量的增多,一部分泥水混合物被沼提升至部的液分离区。

 

液分离区:被提升的混合物中的沼在此与泥水分离并导出处理,泥水混合物则沿着回流管返回到zui下端的混合区,与反应器底部的污泥和进水充分混合,实现了混合液的内部循环。
2厌氧区: 经1厌氧区处理后的废水,除一部分被沼提升外,其余的都通过三相分离器进入2厌氧区。该区污泥浓度较低,且废水中大部分机物已在1厌氧区被降解,因此沼产生量较少。沼通过沼管导入液分离区,对2厌氧区的扰动很小,这为污泥的停留提供了利条件。

沉淀区:2厌氧区的泥水混合物在沉淀区进行固液分离,上清液由出水管走,沉淀的颗粒污泥返回2厌氧区污泥床。
  从IC反应器工作原理中可见,反应器通过2层三相分离器来实现,获得高污泥浓度;通过大量沼和内循环的剧烈扰动,使泥水充分接触,获得良好的传质效果。

四川省IC厌氧反应器

厌氧发酵罐的: 


因 为我们现在对于餐厨垃圾资源化利用这块比较重庆视,在我*的33个试点城市里边,初步统计2/3以上的城市都是比较主张采用厌氧消化作为餐厨垃圾资源化利用的技术。同时,想改用厌氧消化作为主要技术的城市还在增加,因此比较目前中的餐厨垃圾利用的现状来说,我们可以说江苏千里研发的厌氧发酵 已经成为了它的主流技术。


  对于餐厨垃圾厌氧发酵它的主要工艺流程,在内的话,我们这个流程主要是由这样几部分构成,*个是餐厨垃圾的预 处理,它主要功能就是去除餐厨垃圾里边的杂质,这是一个提纯的过程,我们不需要的那部分杂质。然后在内因为餐厨垃圾含油量比较高,所以它的油脂提取也是比较重庆要的一块,就是预处理,要提取其中的油脂进行回收利用,它可以作为化工原料,会生物柴油作为原料来利用。经过提纯之后的餐厨垃圾的浆液,就 会送到厌氧发酵进行厌氧发酵。zui后产生甲烷体进行回收利用,zui后发酵之后的产物还一个处理的过程。所以主要的餐厨垃圾它的厌氧发酵就是由这样几个部分组成。 
  前面其实已经提到了餐厨垃圾它的一些性,由于它具前面我所提到的这样一些性,利用它来做这个厌氧发酵的话,必然也会存在一 些难点,所以接下来我想对这个餐厨垃圾厌氧发酵的难点进行一些分析,*个是餐厨垃圾,其实厌氧发酵技术对于我们中来说是一个比较成熟的技术,在污水处理领域利用率也是非常高。现在把这个厌氧消化技术到餐厨垃圾里边就如下几个问题是我们需要考虑的,*餐厨垃圾它的含固率相对于我们原来处理的污水 来说,它的含固率比较高。如果说我们用传统的厌氧消化技术来进行处理的话,要想到的一个问题就是我要降低这个含固率,因此就会加入大量的清水或者回流的沼液进行稀释,这样处理之后,zui后终端出来的废液它的产量就会增高,这是*个问题。


  二因为餐厨垃圾是高油比较粘稠的状态,同时在里边 不可避免还存在着塑料、瓷器等等这样一些杂质在里边,并且就我们目前对中餐厨垃圾进行调查发现这部分杂质,它的含量还比较高。垃圾又比较粘稠,所以要把这部分杂质从餐厨垃圾里边分选出来,它的难度就比较高。如果这部分杂质进到厌氧发酵罐里面,像塑料这样的轻物质就会浮在表面,时间长了还会结渣,这样产生 的甲烷就法释放出来。如果重庆物质,像瓷器还沙石,进到厌氧发酵里边就会在罐内发生沉积,在输送过程中对设备造成磨损,这部分是我们必须攻克的难点。湖南省IC厌氧反应器咨询 
三个,餐厨垃圾因为机含量非常高,所以它比较容易酸化,就是厌氧发酵水解酸化和甲烷化两个过程,它的*阶段是在几天时间之内就会完 成,就会使物料的PH值大幅度降低,PH值的降低对于二阶段的产甲烷菌来说是非常不利的,所以可能会导致发酵罐的酸化,这对发酵罐来说影响是比较大的。

 

四、厌氧发酵罐发酵时产生的问题处理  
大的厌氧发酵罐它就存在一个表面的结渣比较难以去除的这样一个问题,就是说你不可能人进到里边或者什么方法来去除表面的结渣。同时它的沉沙也是比较难以清除的,这个表面浮渣和底部沉沙如果比较严重庆的话,就会导致发酵罐的清罐,这个是要力避免发生的现象。 
   那么至于zui后产生的沼我们要回收利用,在利用之前因为沼里边含大量的硫化氢,我们在利用之前必须对它进行预处理,脱除其中的硫化氢等等,根据需要还会进行其他的处理,到满足我们使用的要求,这部分它的处理成本相对来说也是比较高的。针对于我前边所提到的这样一些餐厨垃圾它在厌氧发酵过程当中存在的 难点,我们也是提出了一些解决方案。 
  *个是对我前面提到的餐厨垃圾含固率比较高,如果稀释处理会导致zui终污水产量较高的这样一个问 题。我们建议的解决方式就是厌氧发酵的过程采用高含固率,也就是说进罐的含固率建议在16%左右,根据我们目前对内餐厨垃圾现状的调查,经过预 处理之后,餐厨垃圾基本上进罐的这个,就是说在不兑水的情况下,含固率在10%到16%之间,是这样一个区间值,建议是不加水或者不采用沼液回流的方 式进行稀释。 
  刚才也提到采用沼液回流会增加污水的产量,采用这种高含固率方式的话,就可以避免前面所说的现象。但是因为餐厨垃圾含固率比较高,对于高含固率的垃圾不进行稀释的话,它对输送设备要求比较高,同时对于厌氧发酵罐的搅拌装置要求也比较高。 
   二个问题,对于餐厨垃圾原料里边的杂质难以分选的问题,我们建议采用的预处理设备,我们是从德引进技术,采用的是专门针对机垃圾进行处理的专设备。餐厨垃圾被收集来之后,是进入到接料斗里边,它设自动盖和吸器口的,当餐厨垃圾来了之后,抖盖会自动打开,通过底部两条轴螺旋进行 挤压进料,设置两条的原因其实是一用一备的意思,因为餐厨垃圾里边杂质含量比较多,可能出现卡死的情况,设置两条就可以在单条卡死的时候,另一条还可以继续进行物料的输送。经过接收之后的物料送到二个专核心设备,这台设备是集于一身的设备,可以将原料中的轻物质自动分离出,对于不易破碎的一 些金属杂质像勺子、易拉罐等等都可以从出料口自动出。因为它主要的功能是破碎和轻物质分离,从这台设备出来的餐厨垃圾就是浆液了,它可以破碎到10毫米 以下,同时还能自动调整浆液的浓度。 
  这个是分离出来的轻物质杂质的效果它是非常干的,也就是说它的机质的损失非常小。我们对分选的效果, 请的检测机构进行了检测,从检测结果上大家可以看到,这个是对于破碎之后的浆液进行了检测,我们浆液的颗粒非常细小,大家看到70%、80%的量都是 在2毫米以内的,这样就利于后端的输送和微生物的利用,从这张表格中大家看到残余的轻物质量比较小,证明我们设备对轻物质的去除量比较高。

厌氧反应器

随着科学的发展,的不断深入,许多新技术,新材料,新理念被运用 于行业,使我技术得到的长足的发展。食品、生物、化工等行业放大部分废水都属于高浓度机废水,利用常规的物化、生化处理难达到处理,同时存在操作管理,投资大,高等一问题。

其他

厌氧流化床反应器是一种的生物膜法处理方法。它是利用砂等大表面积的 物质为载体。厌氧微生物以膜形式结在砂或其它载体的表面,在污水中成流动状态,微生物与污水中的机物进行接触吸附分解机物,从而达到处理的。厌氧反应器,在内外厌氧处理中*采用以砂为载体,设备结构为内外两个圆筒,利用制的轴流泵,使污水和机生物膜的砂在外筒中进行循环,达到流化的。 由于砂的比表面积大,每立方米可5500-6500m2/m3(折合一般填料40-50m3),因而生物接触面积别大,因而处理效率很高,每立方米效反应器容积可每天处理COD达35-45公斤COD/m3。

IC厌氧反应器工作流程

进水经过布水器输入反应器,与下降管循环来的污泥和出水均匀混和后,进入一个反应分离区内,流化床反应室。在那里,大部分COD被降解为沼,在这个分离区产生的沼由低位三相分离器收集和分离,并产生体提升。体被提升的同时,带动水和污泥作向上运动,经过一级上升管达到位于反应器部的体/液体分离器,在这里沼从水和污泥中分离,离开整个反应器。水和污泥混和经过同心的下降管直接滑落到反应器底部形成内部循环流。从*级分离区的出水在二段低负荷后处理区内被深度处理,在那里剩余的可生物降解的COD被去除,在上层分离区产生的沼被部的三相分离器收集,并沿二级上升管,输送到部旋流式体/液体分离器,实现沼分离和收集。同时,厌氧出水(12)经过出水堰离开反应器自流进入后续处理中。

 

概述

实践表明,一个成功的反应器必须是:①具备良好的截留污泥的性能,以拥足够的生物量;②生物污泥能够与进水基质充分混合接触,以微生物能 够充分利用其活性降解水中的基质。同时,研究人员基于对各类化合物厌氧降解机理研究的进展,从厌氧底物降解途径和动力学两方面入手,分析提高和保持反应器内微生物活性的可能措施,并与反应器的设计相结合,面提高反应器的性能。

厌氧过程实质是一系列复杂的生化反应,其中的底物、各类中间产物、zui终产物以及各种群的微生物之间相互,形成一个复杂的微生态,类似于宏观 生态中的食物链关系,各类微生物间通过营养底物和代谢产物形成共生关系(symbiotic)或共营养关系(symtrophic)。因此,反应器作为提供微生物生长繁殖的微生态,各类微生物的平稳生长、物质和能量流动的顺畅是保持该持续稳定的必要条件。如何培养和保持相关类微生物的平衡生长已经成为反应器的设计思路。

会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~
拨打电话
在线留言