厦门1771-CP1模块
1771-CD
1771-CE
1771-CFM
1771-CP1
1771-CP2
1771-CP3
1771-CT
1771-IA
1771-IAD
1771-IB
1771-IBD
1771-IC
1771-ID
1771-ID16
1771-IFE
1771-IFF
1771-IFMS
1771-IGD
1771-IH
1771-IL
1771-IN
1771-IND
1771-IQ
1771-IQ16
1771-IR
1771-IT
1771-IV
1771-IXE
1771-IXHR
1771-NBSC
1771-NBTC
1771-NBV1
1771-NC15
1771-NC6
1771-NIS
1771-NIV
1771-NIV1
1771-NIVR
1771-NOC
1771-NOV
1771-NR
1771-NT1
1771-NT2
1771-OA
1771-OAD
1771-OBD
1771-OD
1771-OD16
1771-ODD
1771-OFE1
1771-OFE2
1771-OFE3
1771-OGD
1771-OM
1771-OP
1771-OQ16
1771-OR
1771-OW16
1771-OZL
1771-P10
1771-P2
1771-P4R
1771-P4S
厦门1771-CP1模块
新一代智能制造的主要特征表现在制造系统具备了学习能力,通过深度学习、增强学习等技术应用于制造领域,知识产生、获取、运用和传承效率发生革命性变化,显著提高创新与服务能力。
从应用上讲,人工智能技术正在被不断地被应用到图像识别、语音识别、智能机器人、智能驾驶/自动驾驶、故障诊断与预测性维护、质量监控等各个领域,覆盖从研发创新、生产管理、质量控制、故障诊断等多个方面。
人工智能可以对复杂过程进行智能化指引。以产品研发设计为例,工业设计软件在集成了人工智能模块后,可以理解设计师的需求,还可以与区域经济、社会舆情、社交媒体等多元化数据进行对接,由此形成的数据模型可向设计者智能化*相关的产品设计研发方案,甚至自主设计出多个初步的产品方案供设计者选择。
人工智能在生产制造管理方面发挥作用,创新生产模式,提高生产效率和产品质量。人工智能技术通过物联网对生产过程、设备工况、工艺参数等信息进行实时采集;对产品质量、缺陷进行检测和统计;在离线状态下,利用机器学习技术挖掘产品缺陷与物联网历史数据之间的关系,形成控制规则;在在线状态下,通过增强学习技术和实时反馈,控制生产过程减少产品缺陷;同时集成专家经验,不断改进学习结果。
在维护服务环节中,系统利用传感器对设备状态进行监测,通过机器学习建立设备故障的分析模型,在故障发生前,将可能发生故障的工件替换,从而保障设备的持续*运行。以数控机床为例,用机器学习算法模型和智能传感器等技术手段监测加工过程中的切削刀、主轴和进给电机的功率、电流、电压等信息,辩识出*的受力、磨损、破损状态及机床加工的稳定性状态,并根据这些状态实时调整加工参数(主轴转速、进给速度)和加工指令,预判何时需要换刀,以提高加工精度、缩短产线停工时间并提高设备运行的安全性。
从行业来讲,人工智能应用不仅涵盖了3C、纺织、冶金、汽车等多个传统制造业产业,还涉及装备制造、机器人、新能源等战略新兴产业。人工智能正在从多个方面支撑传统制造向智能制造迈进,为中国制造业“由大变强”的发展注入新动能。
同时,我们必须清醒地认识到,中国制造业仍面临错综复杂的局面。首先是制造企业数字化程度太低,而数字化又是智能化的基础,再加上研发能力不强也是中国制造业整体大而不强的主要原因。其次,现在的人工智能技术只能算是弱人工智能,机器学习和深度学习等技术在制造企业的实际应用有待加强;第三,人工智能产业发展环境还不成熟,缺乏行业标准和安全保障制度。
人工智能融入制造业的根本目的是提质增效、降低成本。但目前来国制造业与人工智能融合有很长的路要走。制造企业需深刻理解,人工智能不是*灵药,它仅仅是一种推动制造业发展的工具或方法,不论外界如何热捧宣传,如果无法与实际应用需求结合,必然缺乏发展的动力。在人工智能应用实践过程中,制造企业不能生搬硬套、急于求成,必须脚踏实地地研发、突破,积累,调研自身实际应用需求,结合现有的软、硬件基础设施、人员技术条件以及资金规划,分析人工智能技术怎么用以及如何用好的问题,只有这样才能激发出人工智能的真正效能,zui终实现智能制造。