杭州蓝芯科技有限公司

3D视觉传感器
深度避障相机 视觉工件测量 结构光视觉传感器 3D视觉物体识别系统 三维视觉相机 3D深度相机 高精度3D视觉相机 3D视觉上料系统 工业机器人视觉定位系统 机器人视觉定位系统 深度视觉感知系统 3D视觉机械上料 机器人视觉导航系统 3D视觉拆码垛 3D视觉检测 工业3D视觉相机 结构光深度相机 Eagle深度传感器 3D视觉抓取系统 3D视觉混合拆垛 3D视觉物流分拣 3D视觉机械上下料 3D视觉订单分拣系统 工业级3D相机 深度视觉传感器 视觉导航模块 混杂多货品分拣系统 机器人3D视觉引导系统 双目视觉定位系统 Eagle 3D视觉传感器 3D视觉引导定位系统 3D视觉拆垛系统 双目视觉传感器 双目3D视觉定位系统 工业机器人3D视觉系统 机器人3D视觉引导 混合物流包裹分拣 3D视觉定位引导系统 3D视觉识别系统 3D智能抓取系统 3D视觉解决方案 机器视觉拆垛系统 3D拆垛系统 3D分拣系统 视觉引导定位系统 工业机器人视觉系统 工业3D视觉系统 3D视觉系统 机器人视觉系统 3D视觉引导拆垛 高精度抓取视觉系统 3D视觉技术 高精度悟空3D相机 某快递包裹无序混合分拣 零件拣选装配 快递供包 电商仓储订单分拣 机器视觉3D引导系统 机器人3D混合无序抓取 3D抓取系统 3D视觉分拣系统 混合拆垛 机器人智能无序分拣系统 3D双目立体视觉 激光3D机器视觉 3D结构光成像系统 货品分拣 混合码垛 包裹体积动态测量 快递包裹无序混合分拣 零食无序分拣装箱 动态高速分拣 无人码垛 机械零件自动上下料 3D视觉定位系统 拆垛及上下料解决方案 货品拣选解决方案 工业机器人上料解决方案 视觉引导拆垛 曲轴连杆定位分拣解决方案 数控机床汽车板簧上料 汽车玻璃涂胶 包裹体积测量 超市物流配货混合码垛 洗衣机配重块装配 药品包装无人拆垛 药品包装无人码垛 电商物流智能分拣 快递包裹分拣 输送带模型分拣 三维扫描系统 视觉拆垛系统 3D成像系统 机器人3D定位系统 3D照相机 3D视觉传感器 3D工业相机 3D相机 机器视觉 高精三维扫描仪 三维相机
智能搬运机器人
全向车型搬运机器人 车间无人搬运机器人 工厂无人搬运机器人 仓储自动搬运机器人 物流移动式搬运机器人 工业智能搬运机器人 物流搬运AGV 仓储AGV小车 工业自主搬运机器人 自主移动式搬运机器人 工厂柔性搬运机器人 智能柔性搬运机器人 柔性化机器人 货物运输机器人 料车搬运机器人 AGV智能搬运机器人 机器人软件系统 辊筒式搬运机器人 设备搬运机器人 滚筒对接机器人 货物搬运机器人 背负式移动机器人 搬运机器人物流应用系统 智慧物流机器人 智能无人搬运车 潜入顶升搬运机器人 辊筒对接机器人 视觉引导式AGV AGV智能机器人 智能无人搬运机器人 自动化搬运机器人 仓库智能搬运机器人 自主机器人搬运系统 智能仓储搬运车 无标识搬运机器人 无轨智能搬运机器人 智能自主搬运机器人 无轨导引AGV小车 工厂物料搬运机器人 视觉搬运AGV 背负自主搬运机器人 AGV自主搬运机器人 仓库搬运机器人 潜入顶升式机器人 辊筒搬运机器人 智能调度系统 辊筒自动搬运机器人 顶升料箱搬运机器人 自动搬运AGV 智能自主移动搬运机器人 3C行业自主移动机器人 电商物流搬运机器人 顶升式自主移动搬运机器人 智能AGV机器人 自行走式物料搬运机器人 配件呼叫器 配件充电器 载具-协作机器人 视觉导航无人托盘车 多机调度智能化生产线 3C行业移动机器人 电商自主移动搬运机器人 电商行业自主搬运机器人 顶升搬运智能机器人 电商仓储机器人 电商仓储搬运智能小车 物流搬运小车 智能移动搬运机器人 智能移动搬运小车 自然导航小车 视觉导航物流机器人 仓储机器人厂家 仓储物流机器人 自主移动机器人 VR全景直播搬运机器人 顶升AGV小车 智能搬运AGV小车 滚筒AGV小车 智能物料搬运机器人 滚筒AGV 无轨搬运机器人 视觉导航小车 智能搬运机器人 顶升搬运机器人 视觉导航机器人 滚筒搬运AGV 智能物流机器人 智能仓储机器人 智能移动机器人 视觉导航AGV 无标识AGV 无轨AGV
智能物流机器人
工业机器人
装车系统
无人叉车系列
无人叉车解决方案 智能无人叉车机器人 车间叉车AGV 智能搬运无人叉车 电动堆高无人叉车 智能无人托盘搬运叉车 托盘搬运机器人 智能托盘堆高叉车 AGV无人化叉车 AGV智能化叉车 托盘电动搬运叉车 堆高型无人叉车 智能升降叉车 自主无人叉车 托盘式堆高叉车 托盘式搬运叉车 堆高叉车式AGV 无人电动搬运叉车 无人搬运叉车机器人 智能仓储无人叉车 工业无人搬运叉车 自主无人搬运叉车 仓库无人叉车 仓库搬运无人叉车 自动叉车机器人 电动叉车机器人 无人智能驾驶叉车 智能AGV叉车 智能无人搬运叉车 AGV叉车系统 无人叉车式AGV 堆垛式叉车 无人叉车机器人 电动托盘搬运叉车 无人AGV叉车 电动叉车AGV 工业叉车AGV 自动AGV叉车 叉车式AGV小车 自动叉车AGV 智能电动叉车 无人驾驶叉车 叉车式AGV 无轨叉车 智能叉车 自动搬运叉车
3D视觉传感器解决方案
智能拣货机器人
核心技术-深度视觉传感器
复合机器人
上下料机器人

基于视觉的AGV机器人障碍物识别

时间:2018/11/22阅读:2735

以车道标示线为道路边缘的视觉检测是AGV路径识别需要实现的基本功能。视觉导航式AGV是利用ccd摄像机采集地面铺设的条带状标示线,采用图像处理和分析的方式来获取导引车周围环境信息,这种方式是AGV识别系统中的核心技术。

涉及内容:坐标系建立,车道模型分析,图像预处理等。下面重点对图像处理方面进行介绍 :

人们对车用机器视觉研究有一个基本共识:图像在获取、转换和传送中都会产生污染,不可避免的造成图像质量的降低,因此,首先应对视频图像进行预处理,然后进行阈值分割,再对路径进行识别与跟踪。

视觉导航式AGV上车载摄像机获取的原始图像中除了包含可用信息外,由于受到环境限制以及加入的随机干扰,使得冗余信息多,可识别性较差,首先必须对原始图像进行预处理,流程如下:

图像平滑是一种低通滤波技术,可以分别在频率域和空间域进行。

(1)模板操作
模板操作实现一种邻域运算,即某个像素点的结果不仅和本像素灰度有关,而且和其邻域点的值有关。模板运算在数学中的描述称之为卷积。

(2)中值滤波
中值滤波是将邻域中的图像像素按灰度级排序,取中间值为输出像素,属于非线性的空域滤波技术,是一种能去除噪声的同时又能保护目标边界不使其变得模糊的滤波方法。其原理是选取一个含有奇数个数像素点的移动窗口,将窗口的中心像素的灰度值用窗口内灰度的中值代替,从而消除孤立的噪声点,其数学表达式如下:

其中,f(x,y),g(x,y)分别为原始图像和处理后图像,φ为二维模板,通常为2*2,3*3区域。

(3)形态学修正

上述处理后的二值化图像中可能仍有少量零散点,而且黑色部分的边缘不是很清晰,存在毛刺和漏洞。对二值化后的图像进行数学形态学滤波实现局部背景平滑。数学形态学主要运算有形态和膨胀、形态差腐蚀、开运算、闭运算。

腐蚀运算的作用是用来消除图像中小于结构元素的无意义边界点,使目标物体的边界向内部收缩;膨胀运算的作用是用来填补图像中目标物体的空洞点,使物体的边界向外部扩张;腐蚀和膨胀的复合运算即成为开运算和闭运算:开运算是对图像进行先腐蚀后膨胀的处理过程,能够消除图像中的边缘毛刺和孤立斑点;闭运算与开运算过程相反,填补图像中的漏洞以及裂缝。它们能对图像进行简单的平滑处理,并检测出图像中的奇异点。根据二值化的处理结果,我们需要把图像中的漏洞和毛刺去掉,并且保持原图像特征不变,因此可以对图像进行开运算以使黑色边缘清晰便于边缘检测。

(4)导航标示线边缘检测算法

边缘是指图像局部亮度变化显著的部分,是图像内像素灰度不连续,或灰度变化剧烈的点的集合。边缘检测的目的是标识数字图像中亮度变化明显的点,计算机视觉处理方法虽然不明显依赖于边缘检测作为预处理,但边缘检测仍是图像分割所依赖的重要特征,是图像分析的重要基础。常用的边缘检测算子有:

(4.1)梯度算子:sobel算子,prewitt算子。

(4.2)基于图像函数二阶导数过零点的算子:LOG算子,canny算子。

障碍物识别研究

对于障碍物的识别,方法的选取是取决于周围环境以及对障碍物的定义。障碍物可以定义为在车辆前方行驶道路上具有一定体积的物体,道路上常见的障碍物包括车辆、货物、杂物等。

障碍物识别技术中关键的是检测、跟踪和定位技术。检测是指确认前方视野路径上是否出现障碍物,跟踪是指对选中的目标进行轨迹描述,定位是指计算出障碍物与自动导引车的实际距离。其中,检测是基础,跟踪是过程,定位是终目的。

空间目标的跟踪,是通过目标的有效特征构建模板,在图像序列中寻找与目标模板相似的候选区域位置的过程,也就是确定目标在序列图像中的轨迹。在基于单目视觉的空间障碍物目标跟踪问题的研究上,一般有两种思路:

(1)不依赖于任何先验知识,直接从图像序列中检测出障碍物,然后跟踪其中感兴趣的目标。

(2)依赖于障碍物的先验知识,首先对可能出现的目标建模,然后在图像序列中实时检测出与模型相匹配的目标,然后进行跟踪。

常用的是第二种思路,因为障碍物存在于某一特定运行环境中,可以用含有有限元的完备集合来表示。对于这种跟踪方法,实现跟踪的步是进行目标检测,即从序列图像中将感兴趣区域从背景图像中提取出来。

在目标跟踪过程中,往往需要采用搜索算法预计未来时刻某目标的位置,以缩小搜索范围。根据这个思路一般有两类算法:

(一)预测目标在下一帧图像可能出现的位置,然后在这个相关区域内寻找*点,常用的预测算法有kalman滤波、扩展的kalman滤波,粒子滤波等。

(二)减小目标搜索范围的算法,通过优化搜索方向,利用某些估计的方法优化求取目标模板和候选目标之间距离的迭代收敛过程,缩小搜索范围,如均值平移算法算法(MeanShift算法)、连续自适应均值平移算法(Camshift)、置信区域算法。

对于空间目标定位算法的研究,主要集中在获取场景中目标上的各点相对于摄像机的距离,这是机器视觉的主要任务之一,也是障碍物识别的终目的。通过计算目标与摄像机的距离参数,就能得到目标相对于小车的速度,目标物大小等参数,更好的为控制的运行状态提供决策数据。这里我搜集了关于基于视觉移动避障的几种实现思路:

常用的计算机视觉方案有多种, 比如双目视觉,基于TOF的深度相机,基于结构光的深度相机等。深度相机可以同时获得RGB图和深度图,不管是基于TOF还是结构光,在室外强光环境下效果都不太理想,因为它们需要主动发光,容易受到强光的干扰;基于结构光的深度相机,发射出的光会生成相对随机但又固定的斑点图样,这些光斑打在物体上后,因为与摄像头距离不同,被摄像头捕捉到的位置也不相同,之后先计算拍到的图的斑点与标定的标准图案在不同位置的偏移,利用摄像头位置、传感器大小等参数就可以计算出物体与摄像头的距离。对于AGV,双目视觉更加合适:

 

双目视觉的测距本质上是三角测距法,由于两个摄像头的位置不同,就像人的两只眼睛,看到的物体不一样。两个摄像头看到的同一个点P,在成像的时候会有不同的像素位置,此时通过三角测距就可以测出这个点的距离。双目算法计算的点一般是利用算法抓取到的图像特征,如SIFT或SURF特征等,通过特征计算出来的是稀疏图。

基于双目立体视觉的障碍物检测的关键在于两点①障碍物目标的提取,即识别出障碍物在图像中的位置和大小;②障碍物目标区域图像对之间的立体匹配点,从而得到障碍物目标的深度信息。前一步是后一步的基础,识别出来的目标可以是多个,在立体匹配得到视差之后才可以标志出哪些目标为障碍物目标。

双目体视技术的实现可分为:图像获取、摄像机标定、特征提取、图像匹配和三维重建。上图中的光轴是近似平行的,在平行光轴系统中,双目视觉测距将三维场景中求目标深度的问题转化为求二维投影图像中求视差的问题。因此,像机模型就是将三维场景的点与二维图像上的点建立一一对应的映射关系。

会员登录

X

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~
拨打电话
在线留言