行业产品

  • 行业产品

河北午阳环保设备有限公司


当前位置:河北午阳环保设备有限公司>>>>等离子废气净化设备

等离子废气净化设备

返回列表页
参  考  价面议
具体成交价以合同协议为准

产品型号

品       牌

厂商性质其他

所  在  地

更新时间:2023-03-18 19:40:29浏览次数:183次

联系我时,请告知来自 智能制造网

产品简介

等离子UV光解废气净化器本设备采用UV紫外光解+臭氧氧化还原+等离子分解+活性炭吸附过滤技术相结合

详细介绍

等离子废气净化设备

  等离子UV光解废气净化器本设备采用UV紫外光解+臭氧氧化还原+等离子分解+活性炭吸附过滤技术相结合,对有机废气进行多级复合式净化处理后达标排放!
  低温等离子区:
  在外加电场的作用下,介质放电产生大量携能电子轰击污染物分子,使其电离、解离和激发,引发一系列复杂的物理、化学反应,使复杂大分子污染物转变为简单小分子安全物质,或使有毒有害物质转变成无毒无害或低毒低害的物质,从而使污染物得以降解去除。
  等离子体化学反应过程中,等离子体传递化学能量的反应过程中能量的传递大致如下:
  (1)电场+电子→高能电子
  (2)高能电子+分子(或原子)→(受激原子、受激基团、游离基团)活性基团
  (3)活性基团+分子(原子)→生成物+热
  (4)活性基团+活性基团→生成物+热
  从以上过程可以看出,电子首先从电场获得能量,通过激发或电离将能量转移到分子或原子中去,获得能量的分子或原子被激发,同时有部分分子被电离,从而成为活性基团;之后这些活性基团与分子或原子、活性基团与活性基团之间相互碰撞后生成稳定产物和热。另外,高能电子也能被卤素和氧气等电子亲和力较强的物质俘获,成为负离子。这类负离子具有很好的化学活性,在化学反应中起着重要的作用。
  UV紫外光解及臭氧催化还原区:
  1、利用特制的高能高臭氧UV紫外线光束照射恶臭气体,裂解恶臭气体如:氨、三甲胺、硫化氢、甲硫氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯,硫化物H2S、VOC类,苯、甲苯、二甲苯的分子键,使呈游离状态的污染物分子与臭氧氧化结合成小分子无害或低害的化合物,如CO2、H2O等。
  2、利用高能高臭氧UV紫外线光束分解空气中的氧分子产生游离氧,即活性氧,因游离氧所携正负电子不平衡所以需与氧分子结合,进而产生臭氧。UV+O2→O-+O*(活性氧)O+O2→O3(臭氧),臭氧对有机物具有的氧化作用,对恶臭气体及其它刺激性异味有的清除效果。
  3、恶臭气体利用排风设备输入到本净化设备后,净化设备运用高能UV紫外线光束及臭氧对恶臭气体进行协同分解氧化反应,使恶臭气体物质其降解转化成低分子化合物、水和二氧化碳,再通过排风管道排出室外。
  4、利用高能UV光束裂解恶臭气体中细菌的分子键,破坏细菌的核酸(DNA),再通过臭氧进行氧化反应,达到脱臭及杀灭细菌的目的。
  利用高效活性炭棉装置的高效过滤性和高吸附性,持续对等离子体未处理干净的污染物和生成物进行过滤拦截,使有害废气经多级净化后最终达标排放;
  等离子UV光解废气净化器产品性能综述:
  1.优质材料制造,防火性能采用开关,电源,电路三重自动保护;
  2.体积小,自重轻,结构紧凑,工艺成熟;
  3.投资少,运行成本低;
  4.无需预处理,适应性强,安全稳定,维护方便,使用寿命长;
  5.高效除恶臭,一次性净化效率高,能同时净化多种污染物,且净化效率高,无需添加任何物质,无二次污染;
  6.环保高科技产品。
  等离子UV光解废气净化器适用范围:
  喷漆车间、油墨印刷、喷涂车间、化工、医药、橡胶、食品、印染、酿造、造纸、炼油厂、污水处理厂、垃圾转运站等产生的有毒有害恶臭废气体。
  产品型号参数:
  型号:ZKDLZ-UV-40K
  处理风量:400000
  外形尺寸MM:3300*1845*1855
  法兰口径MM:1635*1645
  使用电压VAC/PH/HZ:220/1/50
  功率:6.3KW。


  低温等离子体技术在气态污染物治理方面优势显著。其基本原理是在电场的加速作用下,产生高能电子,当电子平均能量超过目标治理物分子化学键能时,分子键断裂,达到消除气态污染物的目的。1980年代,日本东京大学S.Masuda教授提出的高压脉冲电晕放电法是常温常压下得到低温等离子体的、的方法。它已成为目前的研究前沿,也正越来越多的用于气态污染物的治理。
  低温等离子体去除污染物的机理:
  等离子体化学反应过程中,等离子体传递化学能量的反应过程中能量的传递大致如下:
  (1)电场+电子→高能电子
  (2)高能电子+分子(或原子)→(受激原子、受激基团、游离基团)活性基团
  (3)活性基团+分子(原子)→生成物+热
  (4)活性基团+活性基团→生成物+热
  从以上过程可以看出,电子首先从电场获得能量,通过激发或电离将能量转移到分子或原子中去,获得能量的分子或原子被激发,同时有部分分子被电离,从而成为活性基团;之后这些活性基团与分子或原子、活性基团与活性基团之间相互碰撞后生成稳定产物和热。另外,高能电子也能被卤素和氧气等电子亲和力较强的物质俘获,成为负离子。这类负离子具有很好的化学活性,在化学反应中起着重要的作用。
  低温等离子体去除污染物的原理:
  低温等离子体技术处理污染物的原理为:在外加电场的作用下,介质放电产生的大量携能电子轰击污染物分子,使其电离、解离和激发,然后便引发了一系列复杂的物理、化学反应,使复杂大分子污染物转变为简单小分子安全物质,或使有毒有害物质转变成无毒无害或低毒低害的物质,从而使污染物得以降解去除。因其电离后产生的电子平均能量在10ev,适当控制反应条件可以实现一般情况下难以实现或速度很慢的化学反应变得十分快速。作为环境污染处理领域中的一项具有潜在优势的,等离子体受到了国内外相关学科界的高度关注。
  是否是低温等离子体处理技术的简单判断方法:
  现在,各传媒上宣传低温等离子废气处理的产品和技术很多,可这些产品的宣传大部分都是在炒低温等离子体概念。如何判断是否是真正意义上的低温等离子体技术?可以用下面两个简单的规则来判断,即使你不懂低温等离子体技术也能判断出是真是假。
  (1)在废气处理的通道上必须充满了低温等离子体。这条规则判断很简单,只要用眼睛观察一下处理通道是否充满紫蓝色的放电就可以直观的了解是否是低温等离子体了(需要注意的是不要将各种颜色的灯光当作低温体放电)。如果在废气处理的通道上只零星的分布若干的放电点或线,则处理的效果是非常有限的,因为,大部分的(VOCs)气体没有进过低温等离子体处理区域。
  (2)低温等离子体处理系统必须要有一定的放电处理功率。通常需要在2~5瓦时/米3。即1000米3/时的风量需要处理的电功率为2KW~5KW。如果号称1000米3/时的风量只需要几十或几百瓦的电功率,则最多也就是静电(除尘)处理或局部处理而已。要想分解VOCs没有一定的能量从理论上也是不可能的。
  等离子废气净化设备的特点:
  1、工艺简洁:等离子废气净化设备操作简单,方便,无需专人看管,遇故障自动停机报警。
  2、节能:低温等离子体处理烟气能耗低,运行费用低廉,2~5瓦时/米3。
  3、适应范围广:在-60℃~+300℃的环境内均可正常运转,特别是在潮湿,甚至空气湿度饱和的环境下仍可正常运行。
  4、设备使用寿命长:本设备由不锈钢材,石英、钼等材料组成,抗氧化性强,在酸性气体中耐腐蚀。
  5、组合性强:低温等离子体处理设备可以窜并联混合应用。
  6、500~2000米3/时为一个低温等离子体处理装置单元,一个单元用一个脉冲电源激励。
  等离子废气净化设备单元规格:
  1.输入电压:AC380V(或AC220V)(±10%)
  2.功率:2~5KW/1000米3(2~5瓦时/米3);
  3.主机重量:10KG;变压器重量:35Kg;低温等离子体处理装置重量:10Kg
  4.主机和变压器之间的连线:<5m;
  5.主机尺寸:250(W)×200(H)×360(D)mm3
  6.变压器尺寸:230(W)×280(D)×290(H)mm3
  7.低温等离子体体积:处理通道内充满低温等离子体
  8.工作环境:
  温度:-10℃~+40℃
  相对湿度:20%~93%(不结露)
  9.大气压力:86Kpa~106Kpa
  10.气体流速:1~30米/秒
  11.处理量:20~20000米3/小时
  12.功耗:2~5瓦时/米3
  13.净化气体升温:小于5°C
  14.压损:小于300Pa
  15.效率:含硫恶臭气体(H2S,CS2)85%,VOC(苯,甲苯,二甲苯)95%
  低温等离子体技术在环境工程中的应用:
  低温等离子体技术在废气处理中的应用随着工业经济的发展,石油、制药、油漆、印刷和涂料等行业产生的挥发性有机废气也日渐增多,这些废气不仅会在大气中停留较长的时间,还会扩散和漂移到较远的地方,给环境带来严重的污染,这些废气吸入人体,直接对人体的健康产生极大的危害;另外工业烟气的无控制排放使性的大气环境日益恶化,酸雨(主要来源于工业排放的硫氧化物和氮氧化物)的危害引起了各国的重视。由于大气受污染而酸化,导致了生态环境的破坏,重大灾难频繁发生,给人类造成了巨大损失。因此选择一种经济、可行性强的处理方法势在必行。
  降解挥发性有机污染物(VOCs)传统的处理方法如吸收、吸附、冷凝和燃烧等,对于低浓度的VOCs很难实现,而光催化降解VOCs又存在催化剂容易失活的问题,利用低温等离子体处理VOCs可以不受上述条件的限制,具有潜在的优势。但由于等离子体是一门包含放电物理学、放电化学、化学反应工程学及真空技术等基础学科之上的交叉学科。因此,目前能成熟的掌握该技术的单位非常的少。大部分宣传采用低温等离子技术处理废气的宣传都不是真正意义上的低温等离子废气处理技术。



  等离子有机废气净化器采用了的吸附-分解-碳化
  工艺技术设计,采用标准模块设计等优点,是一种干法处理有机废气的净化设备。它改变了使用活性碳材料的工艺技术,无需再生处理原料,无需专人负责,不产生二次污染,更换及维护保养方便(可在设备正常运行情况下更换维护操作)。
  等离子有机废气净化器产品,无需增大抽风设备风阻小,安装简便,可根据客户现场环境要求分组制造,方便运输及安装。设备结构紧凑,投资低,操作方便,产品采用标准型材料制造,或采用全不锈钢材料制造,处理风量有6000~80000m3/h,以上是目前处理工业有机废气污染的*设备。
  净化机理/等离子有机废气净化器
  采用脉冲高压高频等离子体电源和齿板放电装置,使其产生高强度、高浓度、高电能的活性自由基,在毫秒级的时间内,瞬间对有害废气分子进行氧化还原反应,将废气中的大部分污染物降解成二氧化碳和水及易处理的物质。
  利用催化氧化剂的强氧化性和高吸附性,持续地对等离子体未处理尽的污染物和生成的物质进行催化氧化反应,使有害废气经多级净化后最终达标排放。
  新颖的结构设计将低温等离子体的发生装置和催化氧化装置有机地结合在同一净化设备内,限度地发挥了复合净化地效能,使之满足占地小,重量轻,能耗少,效率高地设计要求。
  功能特点/等离子有机废气净化器
  具有一次性净化效率高,能同时净化多种污染物;
  防火性能采用开关,电源,电路三重自动保护;
  设备体积小,结构紧凑,工艺成熟;
  设备投资少,运行成本低;
  安全稳定,维护方便,使用寿命长;
  净化效率高,无二次污染
  适用范围/等离子有机废气净化器
  喷漆车间、油墨印刷、喷涂车间、化工、医药、橡胶、食品、印染、、造纸、酿造等生产过程中产生的有毒有害废气。
  注意事项/等离子有机废气净化器
  1、在净化器安装投入使用2-3个月后必须定期进行清洗,维护及保养,否则会影响净化效果,或损坏内部件,严重的会导致意外发生(视其使用情况可增,减清洗次数)。
  2、对净化器设施的清洗,保养及维护,必须由专业人员或生产厂家进行操作。
  3、净化器在运行过程中,严禁打开门舱,用手或其它物件触摸内部件,以防发生意外事故。
  安装规范要求/等离子有机废气净化器
  1:输入电源必须与净化器所用电源相符,严禁输入电源与净化器所用电源不符,且净化器箱体必须接地,以确保安全。
  2:净化器进风口必须安装变径导风分流管(内设百叶式分流片,每片间距100MM),使废气平均分布进入净化器的各处理室,提高净化器使用率和处理效果。
  3:在安装净化器必须留有足够空间用来打开净化器的门舱和电控盖,方便维护,检修及清洗。
  4:为确保安全,净化器安装在室外,必须对净化器的电控电源加盖保护,以防雨水及阳光损坏电控电源而导致发生事故。
  5:净化器需拆散搬运安装时,必须由专业人员根据原有装配规范操作组装,严禁有杂物或砂尘进入内部处理室,并检查内部件是否牢固。
  6:选择净化器安装位置时,要求与污染源保持5米以上距离,抽风机与净化器保持在3米以上距离较为合适,并加设减振套以防影响净化器工作。
  7:净化器安装在高楼天台时,建议安装防雷设施,以保安全,严禁将净化器安装在高温设施附近。


  低温等离子废气处理设备已经还广泛的应用于环境保护、包装、纺织、塑料制品、汽车制造、电子设备制造、家电制造、计算机制造、手机制造、生物材料、卫生材料、医疗器皿、杀菌消毒、环保设备、石油天然气管道、供暖管道、化工子、半导体、航空航天等行业中。
  低温等离子废气处理工艺概述
  低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的放电电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。
  DBD等离子体反应区富含的物质,如高能电子、离子、自由基和激发态分子等,废气中的污染物质可与这些具有较高能量的物质发生反应,使污染物质在极短的时间内发生分解,并发生后续的各种反应以达到讲解污染物的目的。与传统的电晕放电形势产生的低温等离子技术相比较,DBD等离子体技术放电量是电晕放电的50倍,放电密度是电晕放电的130倍。所以,传统低温等离子体技术只能用于室内空气异味治理,与其他低温等离子体技术相比较,DBD等离子体技术是用于工业化工艺废气治理的技术。
  等离子体去除污染物的基本过程
  过程一:高能电子的直接轰击
  过程二:O原子或臭氧的氧化
  O2+e→2O
  过程三:OH自由基的氧化
  H2O+e→OH+H
  H2O+O→2OH
  H+O2→OH+O
  过程四:分子碎片+氧气的反应
  低温等离子技术特点
  1、技术,工艺简洁:开机后,即自行运转,受工况限制非常少,无需专人操作,除臭率可达99%。
  2、节能:无机械设备,空气阻力小,耗电量约为0.003kw/m3废气。
  3、适应工况范围宽:设备启动、停止十分迅速,随用随开,不受气温的影响。在250℃以下和在雾态工况环境中均可正常运转。-50℃至+50℃的环境温度仍可正常运转。
  4、设备使用寿命长:本设备由不锈钢材,铜材、钼材、环氧树脂等材料组成,抗氧化,采用防腐蚀材料,电极与废气不直接接触,根本上解决了设备腐蚀问题。
  5、结构简单:只需用电,操作极为简单,无需派专职人员看守,基本不占用人工费。
  6、无机械设备:故障率低,维修容易。
  7、应用范围广:介质阻挡放电产生的低温等离子体中,电子能量高,几乎可以将所有的异味气体分子降解。
  低温等离子体技术工艺路线:
  异味气体从气体收集系统收集后进入等离子体反应区,在高能电子的作用下,使异味分子受激发,带电粒子或分子间的化学键被打断,同时空气中的水和氧气在高能电子轰击下也会产生OH自由基、活性氧等强氧化性物质,这些强氧化性物质也会与异味分子反应,使其分解,从而促进异味消除。净化后的气体经排气筒高空排放。


  随着经济的发展,低温等离子设备环境污染问题日益突出,各种类型的环境污染层出不穷,严重危及了人类的健康与生存。为了人类自身的安危,治理环境问题迫在眉睫。近年,涌现出许多治理工业废气污染问题的各种技术,如超声波、光催化氧化、生物法、冷冻法、焚烧法等。其中低温等离子体作为一种高效、低能耗、处理量大、操作简单的环保新技术来处理有毒、有害及难降解物质,低温等离子废气设备是近年来一项重大科技成果,具有其它方法的优势。
  低温等离子体技术应用范围广,气体的流速和浓度对于气态污染物治理技术应用来说是两个非常重要的因素。生物过滤和燃烧技术能应用于较高浓度范围,但却受气体的流速所限。而低温等离子体技术对气体的流速和浓度都有一个很宽的应用范围,低温等离子设备其应用广泛不言而喻。等离子体技术工艺简单。吸附法要考虑吸附剂的定期更换,脱附时还有可能造成二次污染;燃烧法需要很高的操作温度;生物法要严格控制pH值、温度和湿度等条件,以适合微生物的生长。而低温等离子体技术则较好的克服了以上技术的不足,反应条件为常温常压,反应器结构简单,低温等离子设备并可同时消除混合污染物(有些情况还具有协同作用),不会产生二次污染等。就经济可行性来说,低温等离子体反应装置本身系统构成就单一紧凑,在运行费用方面,微观来讲,因放电过程只提高电子温度而离子温度基本保持不变,这样反应体系就得以保持低温,低温等离子设备所以不仅能量利用率高,而且使设备维护费用也很低。
  低温等离子体技术在气态污染物治理方面优势显著。其基本原理是在电场的加速作用下,产生高能电子,当电子平均能量超过目标治理物分子化学键能时,分子键断裂,达到消除气态污染物的目的。
  低温等离子体去除污染物的机理:
  等离子体化学反应过程中,低温等离子设备等离子体传递的化学能量在反应过程中能量的传递大致如下:
  (1)电场+电子→高能电子
  (2)高能电子+分子(或原子)→(受激原子、受激基团、游离基团)活性基团
  (3)活性基团+分子(原子)→生成物+热
  (4)活性基团+活性基团→生成物+热
  从以上过程可以看出,低温等离子废气设备电子首先从电场获得能量,通过激发或电离将能量转移到分子或原子中去,获得能量的分子或原子被激发,同时有部分分子被电离,从而成为活性基团;之后这些活性基团与分子或原子、活性基团与活性基团之间相互碰撞后生成稳定产物和热。另外,高能电子也能被卤素和氧气等电子亲和力较强的物质俘获,成为负离子。这类负离子具有很好的化学活性,在化学反应中起着重要的作用。
  低温等离子体去除污染物的原理:
  低温等离子体技术处理污染物的原理为:低温等离子设备在外加电场的作用下,介质放电产生的大量携能电子轰击污染物分子,使其电离、解离和激发,然后便引发了一系列复杂的物理、化学反应,使复杂大分子污染物转变为简单小分子安全物质,或使有毒有害物质转变成无毒无害或低毒低害的物质,从而使污染物得以降解去除。因其电离后产生的电子平均能量在10ev,低温等离子设备适当控制反应条件可以实现一般情况下难以实现或速度很慢的化学反应变得十分快速。作为环境污染处理领域中的一项具有优势的,等离子体受到了国内外化工废气治理方面的高度评价。
  低温等离子体技术在环境工程中的应用:
  随着工业经济的发展,石油、制药、油漆、印刷和涂料等行业产生的挥发性有机废气也日渐增多。这些废气不仅会在大气中停留较长的时间,还会扩散和漂移到较远的地方,给环境带来严重的污染。这些废气吸入人体,直接对人体的健康产生极大的危害,工业废气的无控制排放使性的大气环境日益恶化。低温等离子设备因此选择一种经济、可行性强的处理方法势在必行。低温等离子废气处理设备在此情况下应运而生。
  降解挥发性有机污染物(VOCs)传统的处理方法如吸收、吸附、冷凝和燃烧等,对于低浓度的VOCs很难实现,利用低温等离子体处理VOCs可以不受上述条件的限制,具有很大的优势。但由于等离子体是一门包含放电物理学、放电化学、化学反应工程学等基础学科之上的交叉学科。因此,目前能成熟的掌握该技术的单位非常的少。大部分宣传采用低温等离子技术处理废气的宣传都不是真正意义上的低温等离子废气处理技术或根本达不到所要求的处理效率。
  是否是低温等离子体处理技术的简单判断方法:
  现在,各传媒上宣传低温等离子废气处理的产品和技术很多,低温等离子设备可这些产品的宣传大部分都是在炒低温等离子体概念。如何判断是否是真正意义上的低温等离子体技术?可以用下面两个简单的规则来判断,即使你不懂低温等离子体技术也能判断出是真是假。
  (1)在废气处理的通道上必须充满了低温等离子体。这条判断规则很简单,只要用眼睛观察一下处理通道是否充满紫蓝色的放电就可以直观的了解是否是低温等离子体了(需要注意的是不要将各种颜色的灯光当作低温体放电)。如果在废气处理的通道上只有零星的分布,少量的放电点或线,低温等离子设备则处理的效果是非常有限的。因为,大部分的(VOCs)气体没有进过低温等离子体处理区域。如果放电点或线很少,处理单元就只能承受很小的功率(比如,几百瓦功率),而且在此情况下,就开始出现拉弧,打火现象。如果出现此现象,处理效率更会急剧下降。因此,通道上必须布满密集的放电点,低温等离子设备在不拉弧、不打火的情况下,才能承受并达到足够的处理功率,才能有足够的能量打开强力的废气分子键。我公司生产的低温等离子体废气设备每台放电点都达到百万级以上。保证了处理单元大功率的承受,高能量的输出。
  (2)低温等离子体处理系统必须要有一定的放电处理功率。低温等离子设备通常需要在2~5瓦时/立方米/小时。即1000立方米/时的风量需要处理的功率为2KW~5KW。如果号称1000立方米/时的风量只需要几十或几百瓦的电功率,则最多也就是静电(除尘)处理或局部处理而已。要想分解VOCs没有一定的能量是不可能的。



  低温等离子净化器所用工艺是在电催化总的设计概念下,分三个即独立又混成的激发系统:微波激发区、等离子激发区、极板激发去。每个激发区有它特定的功能,但在原理上有它相似的地方。
  1:微波激发区
  等离子净化
  本工艺有3至9个微波激发单位,根据被处理风量的不同数量不同,微波由于它的频率相对比较高,在纳秒的时间内有效作用于被处理空间(区域),由于微波的功率相对较小,因此在激发能力上也就是说电子的获能跃迁能力上有限,本设计只是把微波作为初频激发源,在处理过程中作为一种预激发能。由于微波的预激功能,极大的提高等离子体区,极板区的激发能力和处理效果,由于微波技术的运用,本工艺在同类设备的比较中显得设备精炼而效果优越。
  2:低温等离子体激发
  本工艺有40支至240支充有特殊气体的无极管组成的低温等离子体激发区,低温等离子体区是工艺的核心技术,国外诸多科研机构室称在常压下实现低温等离子体。从大量的试验分析,常压低温等离子体要在工业中应用存在的困难仍旧很大,本工艺借助低气压的无极灯作为低温等离子体的激发体,限度地在无极管区实现低温等离子体区,由于低温等离子体在能量跃迁过程中具有的能量平衡性,在粒子撞击中失能极少,所以低温等离子体作为原子激发是的一种能。在实践应用中,的科题在于低气压究竟是多少帕?管内充什么样的气体经济价值?这没有理论模型可言,只有通过实践、实验、分析。
  3:极板区
  根据被处理气体的流量,极板间的电压分12KV、16KV至42KV,极板间加以足够高的电压,在引风的作用下,极区由于负压的作用,按照法拉第暗区理论、光致电离理论、自由离理论,在常压或接近常压的条件下有相当概率的粒子可能实现低温等离子体。
  根据三类的功能区,集中的目的是实现低温等离子体,由于理论和实际使用条件上的区别,单一的方法获得低温等离子体,从功率上,外部条件上都存在差距。本工艺集三种技术与一体,经山东、江苏、浙江三地多家医药、化工企业的实地测试,原废气的去除率非常理想,根据尼普公司的测试,高浓度废气去除率可达84%以上。
  电催化氧化工艺集低温等离子体、微波放电、极板放电与一体,在实际使用中实现废气的有效处理是极为复杂的过程,整个过程在不到1秒的时间内完成。从理论到模型都能探究到相关的机理,通过三种方式的集中放电,废气分子从低能的E,在千分之一秒的时间内跃迁到足以使其电离的Em级,废气分子键充分断裂,在雪崩式的撞击中断裂后的粒子由于质量更小,被进一步跃迁,与反应堆内的氧离子氢氧根离子发生反应,生成无害无味的CO2、H2O以及其它高价化合物。同时由于反应堆内臭氧以及紫外线的作用,去除不同范畴的废气化合物,实地较为广谱的去除空间。
  低温等离子体去除污染物的机理:
  等离子体化学反应过程中,等离子体传递化学能量的反应过程中能量的传递大致如下:
  (1)电场+电子→高能电子
  (2)高能电子+分子(或原子)→(受激原子、受激基团、游离基团)活性基团
  (3)活性基团+分子(原子)→生成物+热
  (4)活性基团+活性基团→生成物+热
  从以上过程可以看出,电子首先从电场获得能量,通过激发或电离将能量转移到分子或原子中去,获得能量的分子或原子被激发,同时有部分分子被电离,从而成为活性基团;之后这些活性基团与分子或原子、活性基团与活性基团之间相互碰撞后生成稳定产物和热。另外,高能电子也能被卤素和氧气等电子亲和力较强的物质俘获,成为负离子。这类负离子具有很好的化学活性,在化学反应中起着重要的作用。
  低温等离子净化器产品有哪些优势?
  适用范围广:净化效率高,尤其适用于其它方法难以处理的多组分废气,如化工,医药等行业,电子能量高,几乎可以和所有的废气分子作用;运行费用低;反应快,设备启动,停止十分迅速,随用随开。
  高效灵活:高效捕集不同粒径的油雾粒子,净化效率高,从根本上解决了复杂的废气组成不能逐一净化的难题,净化单元可以灵活组合,根据不同的净化处理量及净化率要求,单元数量可作调整。
  方便*:净化单元采用分体抽屉式结构,易于安装,维护,清洗特别方便,电源控制系统可自动调节电场强度,使净化设备在长期运行后仍保持较高的净化率。
  安全稳定:安全系统设计周密,检修门被打开,高压电源即自动切断;高压电源精心设计成环氧树脂严密封闭的单元体,使用安全可靠;采用了大型机所运用的闪络跟踪技术,可配备远程控制系统,大大提高运行运行的安全系数,电源控制系统具有过流过压自动保护装置,保证设备稳定运行。
  低温等离子净化器特点:
  节能:使用寿命长,节能高效比传统技术节能50%以上。
  占地面积小:智能,能自动判断工作运行状态,并显示相应的工作指示灯。
  低温等离子净化器工作原理:
  低温等离子体是继固态,液态,气态之后的物质第四态,当外加电压达到气体的放电电压时,有机气体被击穿,产生包括电子,各种离子,原子和自由基在内的混合体。低温等离子体降解污染物是利用这些高能电子,自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以产生一系列水,二氧化碳等碳水化合物以达到降解污染物的目的。
  低温等离子净化器应用范围:
  低温等离子体技术在历经多年研发生产,该技术已经能够稳定的应用于污水处理厂,石油化工,制药,污水处理,涂料,皮革加工,感光材料,汽车制造,食品加工厂,印染厂,垃圾处理厂,公厕,屠宰场,牲畜饲养场,鱼类加工厂,饲料加工厂等诸多能够产生恶臭异味的场所。


  低温等离子空气净化器有效提高空气清洁度的产品,主要分为家用、商用、工业、楼宇。
  低温等离子空气净化器中等离子体是一种聚集态物质,它有别于常识中的“固”、“液”、“气”三态物质,是物质的第四态,其所拥有的高能电子同空气中的分子碰撞时会发生一系列基元物化反应,并在反应过程中产生多种活性自由基和生态氧,即臭氧分解而产生的原子氧。
  低温等离子空气净化器去除污染物的原理:
  在外加电场的作用下,介质放电产生的大量携能电子轰击污染物分子,使其电离、解离和激发,然后便引发了一系列复杂的物理、化学反应,使复杂大分子污染物转变为简单小分子安全物质,或使有毒有害物质转变成无毒无害或低毒低害的物质,从而使污染物得以降解去除。因其电离后产生的电子平均能量在10ev,适当控制反应条件可以实现一般情况下难以实现或速度很慢的化学反应变得十分快速。
  低温等离子空气净化器适用对象:
  低温等离子空气净化器在居家、医疗、工业领域均有应用,居家领域以单机类的家用空气净化器为市场的主流产品。最主要的功能是去除空气中的颗粒物,包括过敏原、室内的PM2.5等,同时还可以解决由于装修或者其他原因导致的室内、地下空间、车内挥发性有机物空气污染问题。由于相对封闭的空间中空气污染物的释放有持久性和不确定性的特点,因此使用空气净化器净化室内空气是的改善室内空气质量的方法之一。
  低温等离子空气净化器的选购:
  1、过滤技术
  颗粒污染物过滤技术主要是HEPA滤网,HEPA滤网质量参差不齐,一些小品牌的滤网虽然具有较高的过滤效率,但是阻力大,能效比比较低,而且很容易堵塞,寿命较短,一般建议选用带有静电驻极的深度容尘HEPA滤网,静电驻极技术使得无纺布纤维带有正负电,有效捕捉空气中的颗粒物,很多HEPA滤网都号称具有静电驻极技术,但是由于技术原因很多滤网的驻极电荷在较短的时间内会衰减的很快,导致过滤效率降低。
  可以选择市面上的如3M静电驻极的HEPA滤网,与3M口罩采用同样静电驻极技术,保证驻极效率不衰减。[9]
  2、关注适用面积或颗粒物洁净空气量(CADR)
  空气净化器净化能力的强弱,主要是由适用面积和颗粒物洁净空气量(CADR:提供的洁净空气的速率)决定,两者之间的关系为:适用面积=CADR×0.1。对其它污染物的净化能力,应和适用面积相结合。[10]
  3、能效比和能效等级
  空气净化器通常是长期连续使用的,能效比作为衡量空气净化器净化能力与电力消耗的重要指标,值得大家关注。能效比和能效等级越高,代表空气净化器越节能,使用成本越低。
  4、臭氧释放量
  臭氧作为强氧化剂具有一定的净化能力,但对人体是有伤害的。国家对空气净化器臭氧释放量有强制性安全要求,限定在≤5×10-6%(臭氧具有鱼腥味)。



  等离子净化器又称低温等离子废气净化器。
  等离废气处理工艺原理
  介质阻挡放电过程中,电子从电场中获得能量,通过碰撞将能量转化为污染物分子的内能或动能,这些获得能量的分子被激发或发生电离形成活性基团,同时空气中的氧气和水分在高能电子的作用下也可产生大量的新生态氢、臭氧和羟基氧等活性基团,这些活性基团相互碰撞后便引发了一系列复杂的物理、化学反应。从等离子体的活性基团组成可以看出,等离子体内部富含化学活性的粒子,如电子、离子、自由基和激发态分子等。废气中的污染物质与这些具有较高能量的活性基团发生反应,最终转化为CO2和H2O等物质,从而达到净化废气的目的。等离子废气处理技术特点低温等离子废气处理技术应用于恶臭气体治理,具有处理效果好,运行费用低廉、无二次污染、运行稳定、操作管理简便、即开即用等优点。
  1、介质阻挡放电产生电子能量高,低温等离子体密度大,达到常用等离子技术(电晕放电)的1500倍,几乎可以和所有的恶臭气体分子作用。
  2、技术反应速度快,气体通过反应区的速度达到3-15米/秒,即达到很好的处理效果。
  3、气体通过部分,全部采用陶瓷、石英、不锈钢等防腐蚀材料,电极与废气不直接接触,根本上解决了低温等离子废气处理技术设备腐蚀问题。
  4、等离子废气处理设备主机为成套工业废气处理装置,前面配有专用塔,能有效去除废气中的粉尘和水分,操作简单。
  5、自动化程度高,设备启动、停止十分迅速,随用随开,对于部分化工生产的不连续性,可以在生产时开启,不生产的间隙停止运行,大量的节约能源。
  6、运行成本较低,比常用的蓄热式燃烧炉RTO节约运行费用5-8倍,每立方米气量运行费用仅为0.3~0.9分钱。
  7、应用范围广阔,基本不受气温和污染物成分的影响,对恶臭异味的臭气浓度有良好的分解作用,恶臭异味的去除率达80-98%,处理后的气体臭气浓度达到国家标准。
  8、重要特点:以非甲烷总烃为例,用色谱法检测,非甲烷总烃去除率也许只有45%,但恶臭异味的去除率达90%。这是因为非甲烷总烃经过处理后,部分分子变成小分子,用色谱法检测时,依然表现为非甲烷总烃。恶臭异味的去除率高,表明实际已经分解了90%以上的污染物质,因为分解后的物质也有部分有异味。
  9、等离子废气处理技术处理工业废气技术不是水洗技术,是通过高能量等离子体对污染物的直接击穿和直接轰击,使分子链断裂,并非污染物的转移。
  等离子废气净化器是一种干法处理废气的净化设备,它采用低温等离子体技术分解废气,无原料消耗,不产生二次污染,日常维护保养简便,是一种新型的废气处理设备。广泛适用于喷涂废气、印刷废气、化工废气、制革业废气、塑胶造粒废气、垃圾中转站废气、污水处理厂废气等各类工业废气的净化处理。
  等离子废气净化器产品特性
  模块化设计,灵活组合适应不同浓度风量要求。
  不锈钢材质,耐腐蚀,强度高,基本免维护。
  自动型高压电源,设备净化效率高,运行性能稳定。
  设备风阻低,无需高风压风机设备,投资省,能耗低。
  设备敞开式排放形式,无封闭高压高温区,安全可靠。
  使用寿命长,安装简便,操作过程实现全自动化。
  等离子废气净化器工作原理
  等离子废气净化器采用高压发生器形成低温等离子体,等离子体是继气态、液态、固态之后的物质第四态。当外加电压达到气体的放电电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态。等离子体降解污染物是利用这些高能电子、自由基等活性粒子,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。在平均能量约5eV的大量电子作用下,通过净化器的苯、甲苯、H2S、CS2、SO2等有机废气分子转化成各种活性粒子,与空气中的O2结合生成H2O、S、CO2等低分子无害物质,使废气得到净化。
  等离子废气净化器-注意事项
  1、设备安装使用前进行使用前检查,检查设备各个零部件是否有松动,等离子场内是否有杂物或金属碎片等;在净化器安装投入使用一个月内进行检查,检查设备运行情况和设备内是否有较大粉尘和杂物和水珠导至短路现象,如果有请及时处;
  2、在净化器安装投入使用2-3个月后必须定期进行清理,维护及保养,否则会影响净化效果,或损坏内部件,严重的会导致意外发生(视其使用情况可增,减清洗次数)。
  3、对净化器设施的清洗,保养及维护,必须由专业人员或培训合格后进行操作。
  4、净化器在运行过程中,严禁打开门舱,用手或其它物件触摸内部件,以防发生意外事故。
  等离子废气净化器技术规格
  型号额定风量(m3/h)运行阻力(Pa)进出风口(mm)功率(kw)外形尺寸(mm)
  宽×深×高
  KXF-5D5000≤200500×5001.02400×1380×900
  KXF-10D×8002.02600×1380×1800
  KXF-15D×9503.03500×1380×1800
  KXF-20D200001050×10504.04300×1380×1800

其他推荐产品更多>>

感兴趣的产品PRODUCTS YOU ARE INTERESTED IN

智能制造网 设计制作,未经允许翻录必究 .      Copyright(C) 2021 https://www.gkzhan.com,All rights reserved.

以上信息由企业自行提供,信息内容的真实性、准确性和合法性由相关企业负责,智能制造网对此不承担任何保证责任。 温馨提示:为规避购买风险,建议您在购买产品前务必确认供应商资质及产品质量。

会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

登录 后再收藏

提示

您的留言已提交成功!我们将在第一时间回复您~