湘杰仪器提供标准D882-02

2009年07月30日
资料类型文件资料大小0
下载次数102资料图片【点击查看】
上 传 人上海湘杰仪器仪表科技有限公司 需要积分0
关 键 词塑料拉力试验机;塑料拉力试验机维修;塑料拉力试验机报价
暂无上传相关文件
【资料简介】

塑料拉力试验机;塑料拉力试验机维修;塑料拉力试验机报价

湘杰仪器   唐:

Standard Test Method for
Tensile Properties of Thin Plastic Sheeting1
This standard is issued under the fixed designation D 882; the number immediay following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.
These test methods have been approved for use by agencies of the Department of Defense to replace Method 1013 of Federal Test
Method Standard 406.
1. Scope *
1.1 This test method covers the determination of tensile
properties of plastics in the form of thin sheeting, including
film (less than 1.0 mm (0.04 in.) in thickness).
NOTE 1—Film has been arbitrarily defined as sheeting having nominal
thickness not greater than 0.25 mm (0.010 in.).
NOTE 2—Tensile properties of plastics 1.0 mm (0.04 in.) or greater in
thickness shall be determined according to Test Method D 638.
1.2 This test method may be used to test all plastics within
the thickness range described and the capacity of the machine
employed.
1.2.1 Static Weighing, Constant-Rate-of-Grip Separation
Test—This test method employs a constant rate of separation of
the grips holding the ends of the test specimen.
1.3 Specimen extension may be measured in these test
methods by grip separation, extension indicators, or displacement
of gage marks.
1.4 A procedure for determining the tensile modulus of
elasticity is included at one strain rate.
NOTE 3—The modulus determination is generally based on the use of
grip separation as a measure of extension; however, the desirability of
using extensometers, as described in 5.2, is recognized and provision for
the use of such instrumentation is incorporated in the procedure.
1.5 Test data obtained by this test method is relevant and
appropriate for use in engineering design.
1.6 The values stated in SI units are to be regarded as the
standard. The values in parentheses are provided for information
only.
1.7 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appropriate
safety and health practices and determine the applicability
of regulatory limitations prior to use.
NOTE 4—This test method is similar to ISO 527-3, but is not considered
technically equivalent. ISO 527-3 allows for additional specimen configurations,
specifies different test speeds, and requires an extensometer or
gage marks on the specimen.
2. Referenced Documents
2.1 ASTM Standards:
D 618 Practice for Conditioning Plastics for Testing2
D 638 Test Method for Tensile Properties of Plastics2
D 4000 Classification System for Specifying Plastic Materials3
D 5947 Test Methods for Physical Dimensions of Solid
Plastic Specimens4
D 6287 Practice for Cutting Film and Sheeting Test Specimens4
E 4 Practices for Force Verification of Testing Machines5
E 691 Practice for Conducting an Interlaboratory Study to
Determine the Precision of a Test Method6
2.2 ISO Standard:
ISO 527-3 Plastics—Determination of Tensile Properties—
Part 3: Test Conditions for Films and Sheets7
3. Terminology
3.1 Definitions—Definitions of terms and symbols relating
to tension testing of plastics appear in the Annex to Test
Method D 638.
3.1.1 line grips—grips having faces designed to concentrate
the entire gripping force along a single line perpendicular to the
direction of testing stress. This is usually done by combining
one standard flat face and an opposing face from which
protrudes a half-round.
3.1.2 tear failure—a tensile failure characterized by fracture
initiating at one edge of the specimen and progressing across
the specimen at a rate slow enough to produce an anomalous
load-deformation curve.
4. Significance and Use
4.1 Tensile properties determined by this test method are of
1 These test methods are under the jurisdiction of ASTM Committee D20 on
Plastics and are the direct responsibility of Subcommittee D20.10 on Mechanical
Properties.
Current edition approved April 10, 2002. Published June 2002. Originally
published as D 882 – 46 T. Last previous edition D 882 – 01.
2 Annual Book of ASTM Standards, Vol 08.01.
3 Annual Book of ASTM Standards, Vol 08.02.
4 Annual Book of ASTM Standards, Vol 08.03.
5 Annual Book of ASTM Standards, Vol 03.01.
6 Annual Book of ASTM Standards, Vol 14.02.
7 Available from American National Standards Institute, 25 W. 43rd St., 4th
Floor, New York, NY 10036.
1
*A Summary of Changes section appears at the end of this standard.
Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.
value for the identification and characterization of materials for
control and specification purposes. Tensile properties may vary
with specimen thickness, method of preparation, speed of
testing, type of grips used, and manner of measuring extension.
Consequently, where precise comparative results are desired,
these factors must be carefully controlled. This test method
shall be used for referee purposes, unless otherwise indicated
in particular material specifications. For many materials, there
may be a specification that requires the use of this test method,
but with some procedural modifications that take precedence
when adhering to the specification. Therefore, it is advisable to
refer to that material specification before using this test
method. Table 1 in Classification D 4000 lists the ASTM
materials standards that currently exist.
4.2 Tensile properties may be utilized to provide data for
research and development and engineering design as well as
quality control and specification. However, data from such
tests cannot be considered significant for applications differing
widely from the load-time scale of the test employed.
4.3 The tensile modulus of elasticity is an index of the
stiffness of thin plastic sheeting. The reproducibility of test
results is good when precise control is maintained over all test
conditions. When different materials are being compared for
stiffness, specimens of identical dimensions must be employed.
4.4 The tensile energy to break (TEB) is the total energy
absorbed per unit volume of the specimen up to the point of
rupture. In some texts this property has been referred to as
toughness. It is used to evaluate materials that may be
subjected to heavy abuse or that might stall web transport
equipment in the event of a machine malfunction in end-use
applications. However, the rate of strain, specimen parameters,
and especially flaws may cause large variations in the results.
In that sense, caution is advised in utilizing TEB test results for
end-use design applications.
4.5 Materials that fail by tearing give anomalous data which
cannot be compared with those from normal failure.
5. Apparatus
5.1 Testing Machine—A testing machine of the constant
rate-of-crosshead-movement type and comprising essentially
the following:
5.1.1 Fixed Member—A fixed or essentially stationary
member carrying one grip.
5.1.2 Movable Member—A movable member carrying a
second grip.
5.1.3 Grips—A set of grips for holding the test specimen
between the fixed member and the movable member of the
testing machine; grips can be either the fixed or self-aligning
type. In either case, the gripping system must minimize both
slippage and uneven stress distribution.
5.1.3.1 Fixed grips are rigidly attached to the fixed and
movable members of the testing machine. When this type of
grip is used, care must be taken to ensure that the test specimen
is inserted and clamped so that the long axis of the test
specimen coincides with the direction of pull through the
center line of the grip assembly.
5.1.3.2 Self-aligning grips are attached to the fixed and
movable members of the testing machine in such a manner that
they will move freely into alignment as soon as a load is
applied so that the

applied so that the long axis of the test specimen will coincide
with the direction of the applied pull through the center line of
the grip assembly. The specimens should be aligned as perfectly
as possible with the direction of pull so that no rotary
motion that may induce slippage will occur in the grips; there
is a limit to the amount of misalignment self-aligning grips will
accommodate.
5.1.3.3 The test specimen shall be held in such a way that
slippage relative to the grips is prevented insofar as possible.
Grips lined with thin rubber, crocus-cloth, or pressure-sensitive
tape as well as file-faced or serrated grips have been successfully
used for many materials. The choice of grip surface will
depend on the material tested, thickness, etc. Line grips padded
on the round face with 1.0 mm (40 mil) blotting paper or filter
paper have been found superior. Air-actuated grips have been
found advantageous, particularly in the case of materials that
tend to “neck” into the grips, since pressure is maintained at all
times. In cases where samples frequently fail at the edge of the
grips, it may be advantageous to increase slightly the radius of
curvature of the edges where the grips come in contact with the
test area of the specimen.
5.1.4 Drive Mechanism—A drive mechanism for imparting
to the movable member a uniform, controlled velocity with
respect to the stationary member. The velocity shall be regulated
as specified in Section 9.
5.1.5 Load Indicator—A suitable load-indicating mechanism
capable of showing the total tensile load carried by the
test specimen held by the grips. This mechanism shall be
essentially free of inertial lag at the specified rate of testing (see
Note 5). Unless a suitable extensometer is used (see 5.2), the
motion of the weighing system shall not exceed 2 % of the
specimen extension within the range being measured. The load
indicator shall determine the tensile load applied to the
specimen with an accuracy of 61 % of the indicated value, or
better. The accuracy of the testing machine shall be verified in
accordance with Practices E 4.
5.1.6 Crosshead Extension Indicator— A suitable
extension-indicating mechanism capable of showing the
amount of change in the separation of the grips, that is,
crosshead movement. This mechanism shall be essentially free
of inertial lag at the specified rate of testing (see Note 5) and
shall indicate the crosshead movement with an accuracy of
61 % of the indicated value, or better.
5.2 Extensometer (Optional)—Asuitable instrument may, if
desired, be used for determining the distance between two
designated points on the test specimen as the specimen is
stretched. This apparatus, if employed, shall be so designed as
to minimize stress on the specimen at the contact points of the
specimen and the instrument (see 8.3). It is desirable that this
instrument automatically record the distance, or any change in
it, as a function of the load on the test specimen or of the
elapsed time from the start of the test, or both. If only the latter
is obtained, load-time data must also be taken. This instrument
must be essentially free of inertial lag at the specified speed of
testing (see Note 5).
5.2.1 Modulus of Elasticity and Low-Extension
Measurements—Extensometers used for modulus of elasticity
and low-extension (less than 20 % elongation) measurements

塑料拉力试验机;塑料拉力试验机维修;塑料拉力试验机报价


旗下子站

工控网机器人3D打印物联网仪器仪表工业软件



关于我们|本站服务|会员服务|企业建站|旗下网站|友情链接| 兴旺通| 产品分类浏览|产品sitemap

智能制造网 - 工业4.0时代智能制造领域“互联网+”服务平台

Copyright gkzhan.comAll Rights Reserved法律顾问:浙江天册律师事务所 贾熙明律师

客服热线:0571-87756395加盟热线:0571-87759904媒体合作:0571-89719789

客服部:编辑部:展会合作:市场部:

返回首页