正在阅读:腾讯AI Lab多篇研究论文入选三大学术会议

腾讯AI Lab多篇研究论文入选三大学术会议

2017-07-20 15:34:04来源:腾讯科技 编辑:半城明灭 关键词:腾讯人工智能计算机视觉阅读量:34849

导读:近日,据腾讯消息,其人工智能实验室多篇研究论文入选了三大学术会议,初步展现了在人工智能领域的技术理论实力。
  【中国智能制造网 企业动态】腾讯AI Lab自成立以来,就担负着人工智能领域研究与发展的重担。近日,据腾讯消息,其人工智能实验室多篇研究论文入选了三大学术会议,初步展现了在人工智能领域的技术理论实力。
 
  1.CVPR(IEEE计算机视觉与模式识别会议)
 
  CVPR是近十年来计算机视觉领域有影响力、内容全面的学术会议,由大的非营利性专业技术学会IEEE(电气和电子工程师协会)主办。2017谷歌(微博)学术指标(Google Scholar)按论文引用率排名, CVPR位列计算机视觉领域。今年CVPR审核了2620篇文章,终收录783篇,录取率29%,口头报告录取率仅2.65%。
 
  腾讯AI Lab计算机视觉总监刘威博士介绍到,「CVPR的口头报告一般是当年前沿的研究课题,在学界和工业界都影响很大,每年都集齐如斯坦福大学和谷歌等高校和科技公司。」
 
  腾讯AI Lab六篇论文入选CVPR
 
  论文一:Real Time Neural Style Transfer for Videos
 
  本文用深度前向卷积神经网络探索视频艺术风格的快速迁移,提出了一种全新两帧协同训练机制,能保持视频时域一致性并消除闪烁跳动瑕疵,确保视频风格迁移实时、高质、完成。
 
  论文二:WSISA: Making Survival Prediction from Whole Slide Histopathological Images
 
  论文提出一种全尺寸、无标注、基于病理图片的病人生存有效预测方法WSISA,在肺癌和脑癌两类癌症的三个不同数据库上性能均超出基于小块图像方法,有力支持大数据时代的个性化医疗。
 
  论文三:SCA-CNN: Spatial and Channel-wise Attention in Convolutional Networks for Image Captioning
 
  针对图像描述生成任务,SCA-CNN基于卷积网络的多层特征来动态生成文本描述,进而建模文本生成过程中空间及通道上的注意力模型。
 
  论文四:Deep Self-Taught Learning for Weakly Supervised Object Localization
 
  本文提出依靠检测器自身不断改进训练样本质量,不断增强检测器性能的一种全新方法,破解弱监督目标检测问题中训练样本质量低的瓶颈。
 
  论文五:Diverse Image Annotation
 
  本文提出了一种新的自动图像标注目标,即用少量多样性标签表达尽量多的图像信息,该目标充分利用标签之间的语义关系,使得自动标注结果与人类标注更加接近。
 
  论文六:Exploiting Symmetry and/or Manhattan Properties for 3D Object Structure Estimation from Single and Multiple Images
 
  基于曼哈顿结构与对称信息,文中提出了单张图像三维重建及多张图像Structure from Motion三维重建的新方法。
 
  2.ACL(计算机语言协会年会)
 
  ACL是计算语言学里重要的会议,今年是第55届。会议涵盖生物医学、认知建模与心理语言学、交互式对话系统、机器翻译等各个领域,今年有194 篇长论文、107 篇短论文、21 个软件演示及 21 篇主题演讲。在2017谷歌学术指标(Google Scholar)按论文引用率排名, ACL是计算机语言学和自然语言处理领域别学术年会。
 
  腾讯AI Lab副主任俞栋认为,「自然语言的理解、表达、生成和转换一直是自然语言处理的核心问题。近年来有很多新的解决思路和方法。今年的ACL涉及自然语言处理的各方面,尤其在语义解析、语义角色标注、基于语义和语法的自然语言生成、机器翻译和问答系统方向上都有一些有趣的工作。」
 
  腾讯AI Lab主任张潼介绍到,「ACL早期利用语法和规则分析自然语言,90年代后,随着以LDC(Linguistic Data Consortium)为代表的自然语言数据集建立扩充,统计自然语言方法在计算语言学里作用越来越大并成为主流。2000年后随着互联网高速发展及以自然语言为核心的人机交互方式兴起,自然语言研究被赋予极高应用价值。」
 
  腾讯AI Lab三篇文章入选ACL
 
  论文一:Modeling Source Syntax for Neural Machine Translation
 
  本文提出将句法树转化为句法标签序列的轻量级方法,有效将源端句法信息引入神经网络翻译系统,被证实能显著提高翻译效果。
 
  论文二:Chunk-Based Bi-Scale Decoder for Neural Machine Translation
 
  本文引入一个额外组块神经网络层,从组块到词的层次生成译文,帮助实现神经网络翻译系统短语级别的建模,实验表明该方法在多种语言上都能显著提高翻译效果。
 
  论文三:Deep Pyramid Convolutional Neural Networks for Text Categorization
 
  文章提出了一种能有效表达文本长距离关系的复杂度词粒度CNN。本文研究了如何加深词粒度CNN对文本进行全局表达,并找到了一种简单网络结构,通过增加网络深度提升准确度,但不过多增加计算量。实验表明15层的DPCNN在六个情感和主题分类任务上达到了目前佳结果。
 
  3.ICML(机器学习大会)
 
  机器学习是人工智能的核心技术,而ICML是机器学习重要的两个会议之一(另一个是NIPS)。ICML源于1980年在卡内基梅隆大学举办的机器学习研讨会,现由机器学习学会(IMLS)主办。2017谷歌学术指标以「机器学习」关键词排名,ICML位列。
 
  腾讯AI Lab主任张潼博士介绍到,「很多经典论文和算法,如CRF,都是在ICML上提出的,这个会议涉及机器学习相关的所有研究,包括近年非常热门的深度学习、优化算法、统计模型和图模型等。在早期,ICML更注重实验和应用,而NIPS更注重模型和算法,但近年来两个会议有些趋同。」
 
  腾讯AI Lab四篇文章入选ICML
 
  论文一:Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction
 
  本文提出了个能在模型训练开始前,同时检测和去除稀疏支持向量机中不活跃样本和特征的筛选算法,并从理论和实验中证明其能不损失任何精度地把模型训练效率提升数个量级。
 
  论文二:GSOS: Gauss-Seidel Operator Splitting Algorithm for Multi-Term Nonsmooth Convex Composite Optimization
 
  本文提出了求解多块非光滑复合凸优化问题的算子分裂新算法,该算法采用Gauss-Seidel迭代以及算子分裂的技巧处理不可分的非光滑正则项,并以实验证实了该算法的有效性。
 
  论文三:Efficient Distributed Learning with Sparsity
 
  本文提出了一个高维大数据中能更有效学习稀疏线性模型的分布式算法。在单个机器训练样本足够多时,该算法只需一轮通信就能学习出统计优误差模型;即使单个机器样本不足,学习统计优误差模型的通信代价只随机器数量对数曲线上升,而不依赖于其他条件数。
 
  论文四:Projection-free Distributed Online Learning in Networks
 
  本文提出了去中心化的分布式在线条件梯度算法。该算法将条件梯度的免投影特性推广到分布式在线场景,解决了传统算法需要复杂的投影操作问题,能处理去中心化的流式数据。
 
  此外,腾讯还受邀参加以下三个会议:8月7日-11日东京举办的SIGIR(计算机协会信息检索大会),入选论文3篇。8月19日-25日墨尔本举办的IJCAI(人工智能联合会议),入选论文6篇。及9月7日-11日哥本哈根举办的EMNLP(自然语言处理实证方法会议),入选论文7篇。
 
  原标题:腾讯AI Lab多篇研究论文入选三大学术会议
我要评论
文明上网,理性发言。(您还可以输入200个字符)

所有评论仅代表网友意见,与本站立场无关。

  • 全域人工智能之城建设驶入快车道

    市科委、中关村管委会,市经济和信息化局,市发展改革委,市政务和数据局,市卫生健康委,北京经开区管委会领导出席,来自各央国企、研究机构,及京内外近500家人工智能上下游生态企业与会。
    人工智能中国智造
    2025-04-30 09:49:19
  • AI已经成为人形机器人最大的瓶颈?

    在看似繁荣的表象下,行业共识正在逐渐浮现:人工智能(AI)技术的滞后,已成为人形机器人实现真正智能化的最大瓶颈。
    人形机器人人工智能
    2025-04-28 15:32:08
  • 从“原子”到算法!人工智能领域的“元素周期表”诞生

    研究团队发现,处于同一“主族“的算法(如支持向量机与核方法)具有相似的数学内核,而位于相同“周期“的算法(如决策树与随机森林)则共享相近的泛化能力图谱。
    人工智能计算机科学
    2025-04-27 17:01:21
  • 宾利发布突破性人工智能皮革检测技术

    人工智能皮革检测系统并不能完全取代宾利训练有素的工匠的技艺。通过自动化人工检测流程,该系统能够提供最高品质的皮革,工匠们可以用它来打造精致的手工缝制细节。
    人工智能皮革检测技术
    2025-04-27 14:42:55
  • 早报|深圳大学人工智能学院正式揭牌成立;SK海力士完成96GB CXL内存模块验证

    深圳大学人工智能学院正式揭牌成立,学院建设基础学科研究中心和算力平台,与腾讯云共建产业学院;SK海力士宣布,其基于CXL 2.0标准的DDR5 96GB内存模块已通过客户验证......
    人工智能内存模块数据传输设备
    2025-04-23 10:41:12
  • 宝马押宝人工智能,能赌赢吗?

    宝马在电池续航方面也取得了显著进展,宝马第六代动力电池技术搭载大圆柱电芯,能量密度提升至300Wh/kg,支持15分钟内完成80%电量快充。
    宝马人工智能
    2025-04-16 14:58:14
版权与免责声明:

凡本站注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本站授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:智能制造网”。违反上述声明者,本站将追究其相关法律责任。

本站转载并注明自其它来源(非智能制造网)的作品,目的在于传递更多信息,并不代表本站赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、平台或个人从本站转载时,必须保留本站注明的作品第一来源,并自负版权等法律责任。如擅自篡改为“稿件来源:智能制造网”,本站将依法追究责任。

鉴于本站稿件来源广泛、数量较多,如涉及作品内容、版权等问题,请与本站联系并提供相关证明材料:联系电话:0571-89719789;邮箱:1271141964@qq.com。

不想错过行业资讯?

订阅 智能制造网APP

一键筛选来订阅

信息更丰富

推荐产品/PRODUCT 更多
智造商城:

PLC工控机嵌入式系统工业以太网工业软件金属加工机械包装机械工程机械仓储物流环保设备化工设备分析仪器工业机器人3D打印设备生物识别传感器电机电线电缆输配电设备电子元器件更多

我要投稿
  • 投稿请发送邮件至:(邮件标题请备注“投稿”)1271141964.qq.com
  • 联系电话0571-89719789
工业4.0时代智能制造领域“互联网+”服务平台
智能制造网APP

功能丰富 实时交流

智能制造网小程序

订阅获取更多服务

微信公众号

关注我们

抖音

智能制造网

抖音号:gkzhan

打开抖音 搜索页扫一扫

视频号

智能制造网

公众号:智能制造网

打开微信扫码关注视频号

快手

智能制造网

快手ID:gkzhan2006

打开快手 扫一扫关注
意见反馈
我要投稿
我知道了