正在阅读:跳出固定思维 AI的终目标远不止人类智能

跳出固定思维 AI的终目标远不止人类智能

2017-11-27 09:53:49来源:网易智能 关键词:人工智能人类智能深度学习阅读量:28141

导读:人们把AI与人类智能相提并论,常常把人类智能视为AI所能达到的终目标。但是我们应该跳出这一思维,因为AI有前途的应用是那些我们从未想过的事情。
  【中国智能制造网 行业动态】人们把AI与人类智能相提并论,常常把人类智能视为AI所能达到的终目标。但是我们应该跳出这一思维,因为AI有前途的应用是那些我们从未想过的事情。

跳出固定思维 AI的终目标远不止人类智能
 
  在过去几年里,人工智能几乎覆盖了所有新闻版面,吸引了企业家、投资者和消费者的很多目光。我们可以看到它的潜力:自动驾驶交通工具、家庭机器人助手以及亚马逊Echo 14.0版本,它们可以让人们做些人类大脑永远都无法思考的事情。这样的未来并不遥远,也许十年时间就能成为现实。
 
  但是,正如我们所谈论的AI话题和阅读与AI有关的文章那样,我们中的许多人仍然以错误的方式思考这个问题。人们把AI与人类智能相提并论,常常把人类智能视为AI所能达到的终目标。我们已经非常熟悉人类智能,因此想要用它来作为衡量标准是很自然的事情。但事情是这样的:人类智能更接近于底层。
 
  为什么要制定与人类能力相匹配的AI目标?
 
  对许多人来说,AI的目标是创造出能像人类那样思考的技术。但它过于简单化了,认为任何智能(无论是人类智能还是人造智能)都能在如此简单的尺度上被评价为“好还是坏”。有些人擅长记忆、逻辑推理或情商,而有些人视觉或听觉能力更强。类似地,AI也有优势和弱点。此外,为什么要制定能与人类能力相匹配的AI目标,而且要将打败人类智能纳入研究范畴呢?
 
  想想所有AI似乎已经超越人类智能的所有维度。人类能在短短1秒内将一段文字翻译成300种语言中的任何一种吗?如何立即确定佳驾驶路线以避开所有交通拥堵?在许多任务中,机器的表现已经超过了我们,特别是那些涉及大数据处理的任务。
 
  我们对AI有什么期待?
 
  别误会我的意思。令我感到兴奋的是,AI开始通过观察和与世界互动模仿人类,并学习人类的能力。这就是所谓的通用人工智能(AGI),它不需要通过数据训练就可直接获得经验。
 
  当然,电影产业正被通用AI所吸引——机器以人类的形态出现,有完整的五官,能够理解世界,并与世界沟通。想象与人类在形态和智力上难以分辨的机器共存是一种超现实的、有趣的想法,但它并不是理解AI当前环境和轨迹的有用基准,以及AI将如何影响大多数产品和行业。AI不应该被以人类的方式来评判。
 
  相反,AI在未来10年的大影响可能是特定领域。 为了实现这一目标,AI需要数据,而且是大量的数据。这些新的令人惊叹的智能形式诞生于快速算法,后者可以处理越来越多的数据。
 
  专注于某个领域的AI和数据驱动软件正处于引发大规模工业颠覆的边缘。例如,在Applied Semantics以及后来的谷歌中,我们建立了机器学习系统,从数百万则广告中选出好的,而所有这些都在几毫秒内完成。每次我们为一个没有点击的广告服务,它就成了一个额外的数据点,可以用来训练AI,因为这是系统学习的一个小机会,更重要的是,可以帮助AI对这个世界做出新的结论。有了数万亿个数据点,这些系统就变得出奇地有效,肯定远远超出了人类的能力范畴。
 
  数据和AI的共生关系
 
  我们正在见证对数据的需求呈几何级数增长。商业世界几乎每一个行业和领域都朝着数字化转型的方向发展:从实体购物到电子商务,从电视广告到移动营销,从现金到加密等等。这些新的规范要求软件、AI和数据,大量的数据。
 
  这正是我创建Factual的原因:为数字创新提供高质量的位置数据,包括AI。数据公司帮助企业开发新产品、获取客户,并理解现实世界中的使用模式。为了打造用于生产此类数据的引擎,我们必须打造自己的AI,而这反过来又会得到来自合作伙伴的更多数据所支持,这是一个非常好的反馈循环。
 
  我们专有AI的有效性无法轻易地与人类相提并论,因为其能力位于不同的智力维度,例如通过处理数万亿个数据点来获得意义。AI许多有前途的应用并不是那些看起来像我们的应用,而是那些可以做我们从未想过的事情的应用。
 
  原标题:数据与AI共生:别再拿人类智能当做AI的目标
我要评论
文明上网,理性发言。(您还可以输入200个字符)

所有评论仅代表网友意见,与本站立场无关。

  • 夯实学校人工智能教育 服务教育强国建设

    无论是培育人工智能领域的高端人才、激发人工智能环境中广大青少年的创新潜力,还是提升智能时代公民的适应力,都需超越传统的标准化人才培养模式,加强人工智能教育和创新能力培养。
    人工智能教育
    2025-05-08 17:26:13
  • 推动人工智能发展 我国已形成完整产业体系

    经过多年持续投资布局,我国人工智能产业体系逐步完善,基础层、模型层及应用层不断升级优化,实现了人工智能、大数据等数据智能技术与实体经济的广泛融合。
    人工智能服务平台
    2025-05-04 09:58:02
  • 全域人工智能之城建设驶入快车道

    市科委、中关村管委会,市经济和信息化局,市发展改革委,市政务和数据局,市卫生健康委,北京经开区管委会领导出席,来自各央国企、研究机构,及京内外近500家人工智能上下游生态企业与会。
    人工智能中国智造
    2025-04-30 09:49:19
  • AI已经成为人形机器人最大的瓶颈?

    在看似繁荣的表象下,行业共识正在逐渐浮现:人工智能(AI)技术的滞后,已成为人形机器人实现真正智能化的最大瓶颈。
    人形机器人人工智能
    2025-04-28 15:32:08
  • 从“原子”到算法!人工智能领域的“元素周期表”诞生

    研究团队发现,处于同一“主族“的算法(如支持向量机与核方法)具有相似的数学内核,而位于相同“周期“的算法(如决策树与随机森林)则共享相近的泛化能力图谱。
    人工智能计算机科学
    2025-04-27 17:01:21
  • 宾利发布突破性人工智能皮革检测技术

    人工智能皮革检测系统并不能完全取代宾利训练有素的工匠的技艺。通过自动化人工检测流程,该系统能够提供最高品质的皮革,工匠们可以用它来打造精致的手工缝制细节。
    人工智能皮革检测技术
    2025-04-27 14:42:55
版权与免责声明:

凡本站注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本站授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:智能制造网”。违反上述声明者,本站将追究其相关法律责任。

本站转载并注明自其它来源(非智能制造网)的作品,目的在于传递更多信息,并不代表本站赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、平台或个人从本站转载时,必须保留本站注明的作品第一来源,并自负版权等法律责任。如擅自篡改为“稿件来源:智能制造网”,本站将依法追究责任。

鉴于本站稿件来源广泛、数量较多,如涉及作品内容、版权等问题,请与本站联系并提供相关证明材料:联系电话:0571-89719789;邮箱:1271141964@qq.com。

不想错过行业资讯?

订阅 智能制造网APP

一键筛选来订阅

信息更丰富

推荐产品/PRODUCT 更多
智造商城:

PLC工控机嵌入式系统工业以太网工业软件金属加工机械包装机械工程机械仓储物流环保设备化工设备分析仪器工业机器人3D打印设备生物识别传感器电机电线电缆输配电设备电子元器件更多

我要投稿
  • 投稿请发送邮件至:(邮件标题请备注“投稿”)1271141964.qq.com
  • 联系电话0571-89719789
工业4.0时代智能制造领域“互联网+”服务平台
智能制造网APP

功能丰富 实时交流

智能制造网小程序

订阅获取更多服务

微信公众号

关注我们

抖音

智能制造网

抖音号:gkzhan

打开抖音 搜索页扫一扫

视频号

智能制造网

公众号:智能制造网

打开微信扫码关注视频号

快手

智能制造网

快手ID:gkzhan2006

打开快手 扫一扫关注
意见反馈
我要投稿
我知道了