德国慕尼黑大学与柏林弗里茨·哈伯研究所的科学家们,已经找到了一条依靠主动式机器学习(AML)技术,来持续改进光伏面板的新方法。传统意义上的学习,无非是借鉴以往的经验。即便需要应对新的情况,AI也相当依赖于此前已经处理过的大致相似状况。不过本文介绍的主动式学习技术,似乎已经开辟出了一个几乎无限的可能。
在面向未来的便携式太阳能电池或可卷曲显示屏等研究领域,有机半导体研究人员在处理无数种可能的候选分子时,就面临着相当大的考验。
庆幸的是,在此类具有改进特性的有机分子的发现任务上,已经有越来越多人开始考虑借助机器学习(Machine Learning)的力量,通过来自计算机仿真或实验的数据而开展相关训练。
然而具有这种可能的小有机分子数量,规模可能高达10^33,使得我们几乎不可能实际生成足够的数据,来反映材料的多样性。
好消息是,弗里茨-哈伯研究所理论系负责人Karsten Reuter教授,刚刚在《自然通讯》(Nature Communications)期刊上发表了他们的新颖解决方案。
主动式机器学习(AML)算法,并不依赖于从现有的数据中学习,而是通过不断地迭代,以确定实际上需要学习该问题的相关数据。
基于此,科学家们首先对几个较小的分子进行了模拟,以获得与分子电导率有关的数据(衡量太阳能电池材料的实用性的一个维度)。
然后算法将决定这些分子的微小修饰是否可推导出实用的特征,或者因缺乏相似数据而不确定。在此情况下,系统都会自动请求新的模拟,通过生成新的数据来自我改进、考虑新分子,并不断重复此过程。
目前,科学家们已经展示了如何借此有效地识别出新的有前景的分子、同时算法仍在继续探索广阔的分子空间,结果是我们几乎每周都可梳理出新型分子结构,有助于让下一代太阳能电池的研发工作愈加轻松。
(原标题:科学家借助主动式机器学习技术来改进光伏面板)
版权与免责声明:
凡本站注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本站授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:智能制造网”。违反上述声明者,本站将追究其相关法律责任。
本站转载并注明自其它来源(非智能制造网)的作品,目的在于传递更多信息,并不代表本站赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、平台或个人从本站转载时,必须保留本站注明的作品第一来源,并自负版权等法律责任。如擅自篡改为“稿件来源:智能制造网”,本站将依法追究责任。
鉴于本站稿件来源广泛、数量较多,如涉及作品内容、版权等问题,请与本站联系并提供相关证明材料:联系电话:0571-89719789;邮箱:1271141964@qq.com。