当前的深度学习应用,正收到复杂性增长、资源需求多样化、以及现有硬件架构的限制。不过近日,英伟达研究人员发表了一篇技术文章,概述了该公司对多芯片模块(MCM)的探索。具体说来是,该团队讲述了“可组合封装”(COPA)GPU 的各项优势,尤其是能够适应各种类型的深度学习工作负载。
得益于固有的功能和优化,图形处理单元(GPU)已成为大量深度学习(DL)研究项目的首选。但由于传统融合 GPU 解决方案正迅速变得不太实用,研究人员才想到到 COPA-GPU 的理念。
这些融合 GPU 解决方案依赖于由传统芯片组成的架构,辅以高带宽内存(HBM)、张量核心(NVIDIA)/ 矩阵核心(Matrix Cores)、光线追踪(RT)等专用硬件的结合。
此类硬件或在某些任务下非常合适,但在面对其它情况时却效率低下。与当前将所有特定执行组件和缓存组合到一个包中的单片 GPU 设计不同,COPA-GPU 架构具有混合 / 匹配多个硬件块的能力。
如此一来,它就能够更好地适应当今高性能计算(HPC)只能够呈现的动态工作负载、以及深度学习(DL)环境。
这种整合更多功能和适应多种类型工作负载的能力,可带来更高水平的 GPU 重用。更重要的是,对于数据科学家们来说,这使得他们更有能力利用现有资源,来突破潜在的界限。
尽管经常混为一谈,但人工智能(AI)、机器学习(ML)和深度学习的概念,却有着明显的区别。DL 可视作 AI 和 ML 的子集,主要通过各种过滤器来预测和分类信息,来模拟人脑的信息处理方式。
作为诸多自动化 AI 功能背后的技术支撑,深度学习可助力其实现各项功能 —— 涵盖从自动驾驶、到监控金融系统的欺诈活动等领域。
另一方面,MCM 概念已于过去几年被炒得火热(其实可追溯到 70~80 年代的 IBM 气泡内存 / 3081 大型机),且 AMD 等厂商早已将小芯片 / 芯片堆叠技术作为其下一代产品的重要演变。
(原标题:英伟达探索COPA多芯片GPU模块架构 以满足不断变化的数据需求)
版权与免责声明:
凡本站注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本站授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:智能制造网”。违反上述声明者,本站将追究其相关法律责任。
本站转载并注明自其它来源(非智能制造网)的作品,目的在于传递更多信息,并不代表本站赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、平台或个人从本站转载时,必须保留本站注明的作品第一来源,并自负版权等法律责任。如擅自篡改为“稿件来源:智能制造网”,本站将依法追究责任。
鉴于本站稿件来源广泛、数量较多,如涉及作品内容、版权等问题,请与本站联系并提供相关证明材料:联系电话:0571-89719789;邮箱:1271141964@qq.com。