正在阅读:人工智能如何实现工厂设备的预测性维护?

人工智能如何实现工厂设备的预测性维护?

2023-04-20 10:41:51来源:OFweek工控网 关键词:人工智能智能制造AI阅读量:24720

导读:人工智能技术的应用能够帮助企业实现工厂设备的预测性维护,从而提高生产效率、降低成本。随着人工智能技术的不断发展,预测性维护将会成为未来制造业的一个重要趋势,实现智能化制造。
  随着工业智能化的推进,人工智能已经成为了工业制造领域中不可少的一部分。在制造业中,工厂设备的预测性维护是非常重要的一环,这可以帮助企业节省成本并提高生产效率。人工智能技术能够帮助企业实现设备的预测性维护,下面我们来探讨一下具体的实现方法。
 
  首先,需要采集大量的数据。通过传感器等设备收集设备的运行数据和状况数据,例如温度、压力等参数。这些数据可以包括从设备中获取的基本数据,例如设备的电流电压、转速、温度等;也可以包括来自资产管理系统(AMS)和其他外部系统的数据,例如设备维护记录、设备使用情况等。在收集数据的同时,还需要选择合适的数据处理方式,如数据清洗、特征提取等,以确保数据质量和准确性。
 
  接下来就是建立模型,这是人工智能实现工厂设备预测性维护的核心。建立模型的过程需要结合设备的历史数据和设备运行状态,通过训练模型,让其学习设备故障与否的规律和特征。
 
  然后将训练好的模型应用在实时数据中,对设备的运行状态进行监测和分析,从而判断设备是否处于故障或异常状态。
 
  最后,需要及时进行维护。通过对设备的实时分析,找出故障原因并采取相应措施,从而避免设备的停机造成的损失。这也是预测性维护的目的,它能够帮助企业提高生产效率,减少维护成本,保证生产线的稳定运行。
 
  总之,人工智能技术的应用能够帮助企业实现工厂设备的预测性维护,从而提高生产效率、降低成本。随着人工智能技术的不断发展,预测性维护将会成为未来制造业的一个重要趋势,实现智能化制造。
我要评论
文明上网,理性发言。(您还可以输入200个字符)

所有评论仅代表网友意见,与本站立场无关。

  • 工业和信息化部办公厅关于印发《智能制造典型场景参考指引(2025年版)》的通知

    《智能制造典型场景参考指引(2025年版)》基于制造企业探索实践,结合技术创新与融合应用发展趋势,从工厂建设、产品研发、生产管理、生产作业等8个重点环节,凝练出40个典型场景,并围绕场景业务活动、核心问题、实施路径与应用成效等方面进行了详细描述。
    智能制造智能制造典型场景
    2025-04-29 13:10:52
  • 加速行业智能化——华为AI+制造行业峰会2025成功举办

    4月28日,华为AI+制造行业峰会2025在广州盛大举行。在峰会上,华为以“三层五阶八步”方法论为制造行业智能化加速提出实施路径,并分享7大场景20个解决方案,基于自身实践助力智能制造走深走实,推动技术革新成为业务高质量发展的核心驱动力。
    华为AI制造业解决方案
    2025-04-29 16:59:22
  • 全域人工智能之城建设驶入快车道

    市科委、中关村管委会,市经济和信息化局,市发展改革委,市政务和数据局,市卫生健康委,北京经开区管委会领导出席,来自各央国企、研究机构,及京内外近500家人工智能上下游生态企业与会。
    人工智能中国智造
    2025-04-30 09:49:19
  • 传统制鞋业的AI突围!鞋企借智能制造重构行业创新范式

    2025年将投入1.2亿元建设“AI智造基地“,计划实现从智能设计到个性定制生产的全链路数字化,目标将定制鞋履的交付周期压缩至72小时以内。
    传统制鞋智能制造AI大模型
    2025-04-29 17:41:52
  • AI已经成为人形机器人最大的瓶颈?

    在看似繁荣的表象下,行业共识正在逐渐浮现:人工智能(AI)技术的滞后,已成为人形机器人实现真正智能化的最大瓶颈。
    人形机器人人工智能
    2025-04-28 15:32:08
  • 从“原子”到算法!人工智能领域的“元素周期表”诞生

    研究团队发现,处于同一“主族“的算法(如支持向量机与核方法)具有相似的数学内核,而位于相同“周期“的算法(如决策树与随机森林)则共享相近的泛化能力图谱。
    人工智能计算机科学
    2025-04-27 17:01:21
版权与免责声明:

凡本站注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本站授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:智能制造网”。违反上述声明者,本站将追究其相关法律责任。

本站转载并注明自其它来源(非智能制造网)的作品,目的在于传递更多信息,并不代表本站赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、平台或个人从本站转载时,必须保留本站注明的作品第一来源,并自负版权等法律责任。如擅自篡改为“稿件来源:智能制造网”,本站将依法追究责任。

鉴于本站稿件来源广泛、数量较多,如涉及作品内容、版权等问题,请与本站联系并提供相关证明材料:联系电话:0571-89719789;邮箱:1271141964@qq.com。

不想错过行业资讯?

订阅 智能制造网APP

一键筛选来订阅

信息更丰富

推荐产品/PRODUCT 更多
智造商城:

PLC工控机嵌入式系统工业以太网工业软件金属加工机械包装机械工程机械仓储物流环保设备化工设备分析仪器工业机器人3D打印设备生物识别传感器电机电线电缆输配电设备电子元器件更多

我要投稿
  • 投稿请发送邮件至:(邮件标题请备注“投稿”)1271141964.qq.com
  • 联系电话0571-89719789
工业4.0时代智能制造领域“互联网+”服务平台
智能制造网APP

功能丰富 实时交流

智能制造网小程序

订阅获取更多服务

微信公众号

关注我们

抖音

智能制造网

抖音号:gkzhan

打开抖音 搜索页扫一扫

视频号

智能制造网

公众号:智能制造网

打开微信扫码关注视频号

快手

智能制造网

快手ID:gkzhan2006

打开快手 扫一扫关注
意见反馈
我要投稿
我知道了