正在阅读:端侧AI大模型很可能是为5G而生?

端侧AI大模型很可能是为5G而生?

2023-08-23 10:10:57来源:维科网通信 关键词:边缘计算AI大模型阅读量:25243

导读:Al 技术用于端侧可以第一时间对收集的数据进行处理,不需要通过网络上传到云侧的处理中心,极大加快了系统响应也减少了系统处理延迟。
  就在前几天小米的年度演讲中,雷军提到小米的AI大模型能力,小爱同学正式升级为生成式大模型,现已经进入测试阶段。小米高管公式在8月17号表示,小米将会很快实现端侧AI模型能力。
 
  01.端侧AI的优势
 
  端侧也就是我们常说的边缘计算,这种模式可以更好的支持AloT场景。也就是:AI+IoT(Internet of Things 物联网)=AIoT。边缘计算,是指在靠近物或数据源头的一侧,采用网络、计算、存储、应用核心能力为一体的开放平台,就近提供最近端服务。边缘计算也是一种分布式计算。它将数据资料的处理、应用程序的运行甚至一些功能服务的实现,由网络中心下放到网络边缘的节点上,以减少业务的多级传递,降低核心网和传输的负担。它的应用程序是在边缘侧发起,产生更快的网络服务相应。对物联网而言,边缘计算技术取得突破,意味着许多控制将通过本地设备实现而无需交由云端,处理过程将在本地边缘计算层完成。
 
  端侧AI具有如下优点:
 
  Al 技术用于端侧可以第一时间对收集的数据进行处理,不需要通过网络上传到云侧的处理中心,极大加快了系统响应也减少了系统处理延迟;
 
  端侧计算可以更高效的处理有价值的关键数据,其余的数据只是临时性的,在端侧结合 AI 能力,不仅可以更及时处理数据,而且减轻网络带宽的限制和缓解对中心侧数据存储的压力;
 
  在端侧的 Al 技术可以高效地对用户的源数据进行处理,将一些敏感的数据进行清洗和保护,端侧设备只将 Al 处理后的结果上报云端。
 
  端侧AI的技术难点:
 
  硬件资源限制
 
  存储、内存、计算资源
 
  模型的版本管理、生命周期
 
  终端的种类很多,不同硬件架构的适配和模型迁移成本过高
 
  第三点同时导致了端侧AI应用复杂度增加
 
  02.5G和端侧计算相辅相成
 
  5G 是一项长期演进的技术,也许最开始,我们对它的感知只是手机网速更快、时延更低,但 5G 的意义远不止于此。随着 5G 标准从 Rel-15、Rel-16 到 Rel-17 等的不断演进,5G 也将不断扩展到更多行业。数据显示,全球有200多家运营商已经部署了5G商用网络,另有将近300家运营商正在投资部署5G技术。在我国,目前已累计建成5G行业虚拟专网16000余个,应用案例涵盖交通、医疗、教育、智慧城市、农业等多个领域。
 
  在5G网络在诞生之初,便定义了它的三大应用场景:eMBB(增强移动宽带)、mMTC (海量机器类通信)和 uRLLC(超可靠低时延通信),相应的为满足高清视频、智慧城市、车联网等业务需求提供技术支持。
 
  但值得关注的是,每个业务场景在发展过程中都有其自身所面临的一些挑战。例如,eMBB将对网络带宽产生数百Gbps的超高需求,从而对回传网络造成巨大传输压力,单方面投资扩容汇聚与城域网络将大幅提高单位媒体流传输成本,无法实现投资收益;uRLLC需要端到端1ms级超低时延支撑,仅仅依赖无线与固网物理层与传输层技术进步,无法满足苛刻的时延需求;mMTC将产生海量数据,导致运营管理的巨大挑战,仅仅由云端集中统一监控无法支撑如此复杂的物联系统。
 
  边缘计算恰好可以为这些问题带来解决方案。首先,边缘计算设备将为新的和现有的边缘设备提供连接和保护;其次,尽管5G将为基于云的应用程序提供更好的连接性和更低的延迟,但仍然存在处理和存储数据的成本,混合边缘计算/5G解决方案可以降低这些成本;最后,边缘计算可以让更多应用程序在边缘运行,例如分析,网络安全或合规性/监管应用程序,减短了由数据传输速度和带宽限制所带来的延时,并可对本地数据做初步分析,为云分担了一部分工作。
 
  高通中国区研发负责人徐晧认为,面对当前AI技术取得重大突破,未来AI与5G-Advanced融合发展,将对智能终端和AI应用发展带来非常深远的影响。在5G-Advanced更大带宽、更低时延的网络能力支撑下,未来AI处理将通过“云-边-网-端”架构不断从云端向边缘、终端侧扩展,从而在手机、汽车、XR、无人机等多种形式的智能终端上催生出大量新兴AI应用。而多种形式的智能终端和丰富的AI应用又会反过来进一步促进5G-Advanced繁荣发展。
我要评论
文明上网,理性发言。(您还可以输入200个字符)

所有评论仅代表网友意见,与本站立场无关。

  • 传统制鞋业的AI突围!鞋企借智能制造重构行业创新范式

    2025年将投入1.2亿元建设“AI智造基地“,计划实现从智能设计到个性定制生产的全链路数字化,目标将定制鞋履的交付周期压缩至72小时以内。
    传统制鞋智能制造AI大模型
    2025-04-29 17:41:52
  • 早报|阿里通义千问登顶全球开源模型榜首;2025年全球GenAI支出将达6440亿美元

    4月2日,全球最大的AI开源社区Hugging Face更新了大模型榜单,阿里通义千问近期开源的端到端全模态大模型Qwen2.5-Omni登上总榜榜首;Gartner预测,2025年全球生成式人工智能(GenAI)支出将达到6440亿美元,较2024年增长76.4%......
    AI大模型生成式人工智能
    2025-04-03 09:33:40
  • AI推理时代,边缘计算成新战场

    面对新兴的AI推理需求,推理性能、效率以及成本毫无疑问是最核心的问题,而边缘计算在靠近数据生成源的地方进行处理和推理,具有低延迟、数据隐私保护和高效能等优势,被视作AI推理的理想位置,由此将成为竞争的新战场。
    AI推理边缘计算
    2025-03-28 13:31:24
  • IDC:到2028年全球边缘计算支出将接近3800亿美元

    报告对边缘计算行业进行了估值,计算出2025年全球边缘计算服务支出总额将达到近 2610亿美元,预计年复合增长率为13.8%,到2028年将达到3800亿美元。
    边缘计算边缘服务
    2025-03-21 13:45:57
  • 边缘计算在人工智能云解决方案中的作用

    边缘计算将数据存储在靠近设备的位置,AI系统直接在网络边缘处理数据。即使没有互联网连接,设备仍可正常运行。这使得可以在几毫秒内处理数据,并提供实时反馈。
    边缘计算人工智能云解决方案
    2025-03-14 13:38:16
  • AI大模型在消防领域应用落地生花

    AI大模型凭借其强大的多模态数据处理能力、实时决策支持和知识迁移特性,正在消防领域开辟智能化转型的新路径。
    AI大模型消防领域
    2025-03-14 10:03:26
版权与免责声明:

凡本站注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本站授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:智能制造网”。违反上述声明者,本站将追究其相关法律责任。

本站转载并注明自其它来源(非智能制造网)的作品,目的在于传递更多信息,并不代表本站赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、平台或个人从本站转载时,必须保留本站注明的作品第一来源,并自负版权等法律责任。如擅自篡改为“稿件来源:智能制造网”,本站将依法追究责任。

鉴于本站稿件来源广泛、数量较多,如涉及作品内容、版权等问题,请与本站联系并提供相关证明材料:联系电话:0571-89719789;邮箱:1271141964@qq.com。

不想错过行业资讯?

订阅 智能制造网APP

一键筛选来订阅

信息更丰富

推荐产品/PRODUCT 更多
智造商城:

PLC工控机嵌入式系统工业以太网工业软件金属加工机械包装机械工程机械仓储物流环保设备化工设备分析仪器工业机器人3D打印设备生物识别传感器电机电线电缆输配电设备电子元器件更多

我要投稿
  • 投稿请发送邮件至:(邮件标题请备注“投稿”)1271141964.qq.com
  • 联系电话0571-89719789
工业4.0时代智能制造领域“互联网+”服务平台
智能制造网APP

功能丰富 实时交流

智能制造网小程序

订阅获取更多服务

微信公众号

关注我们

抖音

智能制造网

抖音号:gkzhan

打开抖音 搜索页扫一扫

视频号

智能制造网

公众号:智能制造网

打开微信扫码关注视频号

快手

智能制造网

快手ID:gkzhan2006

打开快手 扫一扫关注
意见反馈
我要投稿
我知道了