正在阅读:实时分析已广泛应用 你清楚它的算法分类吗?

实时分析已广泛应用 你清楚它的算法分类吗?

2016-06-24 11:06:51来源:机房360 原标题:大数据和实时分析的算法分类 关键词:大数据实时分析算法分类阅读量:29611

导读:如今,大数据技术的发展和进步开辟了收集和传输大量的数据更有效的新方式。这场革命促进了实时算法和方法的研究和发展。
  【中国智能制造网 技术前沿】如今,大数据技术的发展和进步开辟了收集和传输大量的数据更有效的新方式。这场革命促进了实时算法和方法的研究和发展。传统上,机器学习算法并不是专为实时处理而设计的。事实上,数据的科学竞赛(如Netflix,Kaggle)由于算法昂贵,并且不切实际的使用,并且计算量很大,这往往屡受诟病。

实时分析已广泛应用 你清楚它的算法分类吗?
  
  植根于感知的准确性是更重要的,该算法的速度作为原始设置的数据挖掘是离线的,往往是分批计算。大数据的出现使其开始有了改变,随着越来越多的算法涌现,对一个可扩展的方式重新考虑。大多数时间的可扩展性,单独不妥协的算法的准确性,作为计算其本质上是相同的。大数据分析的实时处理带来了一个更根本的变化,因为它限制了可以在这种情况下可以采用的算法的计算复杂度。一个实时的流媒体算法应该满足以下条件:它应该在一次处理一个例子中,多检查它一次,使用有限的内存量,在有限的时间内工作,并随时在任何时候进行预测。
  
  为了满足这些要求,流媒体算法设计成为了一种时尚,一个学习的模型不断更新,以反映来自流媒体传入的例子。在处理一个传入的例子后,无论数据稀疏,能够产生预测的算法是必需的。对于流数据的前沿方法有来自许多不同的方向,在网上学习,随机线性代数,云计算的分布式的优化方法,甚至直到多类噪音和杂散数据的存在分类问题。一般来说,这些方法并不是特别有效,但预测的某些部分可能基于预先计算的模型。事实上,离线在线周期是一个传统机器学习和实时分析之间的良好折衷,因为它推动其通过该方法的在线部分,并作为新的观测进来细化模型离线的方法。
  
  增量学习算法代表发适合于实时分析所提出的要求的一种方法。从本质上说,这些算法有一个离线的核心模型,可以回顾历史数据,进行新的观察,并逐步进入模型。为了保持模型的快速增量更新,这只是部分更新基于概念漂移是在流的检测模型,然后在预定的时间开始全面更新脱机。这使系统对新的观察迅速作出反应,这是速度和准确性之间的妥协。要注意,这取决于所采用的算法的类型,有可能更新到充分建模,在这种情况下,没有必要保持一个离线部分的算法。事实上,这使得增量算法的在线学习算法的主要标准是它是否能够更新模型,并产生实时的预测。
  
  实时分析已被应用在各种各样的场景,包括社交媒体,金融和各种科学学科被采用。然而,可以处理大量的实时数据的工具仍然稀缺,主要是内部解决方案。
  
  分类:
  
  Hoeffding选项树是一个渐进的决策树算法。Hoeffding树利用的事实是一个小样本往往是足够来选择佳的分裂特性。
  
  朴素贝叶斯是一个非常简单的和计算上轻型分类器,该模型的更新和新的样本的分类可以实时进行。朴素贝叶斯是增量学习的一个很好的例子,没有一个离线组件,因为这种模式能够产生没有预测的历史数据,从而提高新的观测能力。
  
  集群:
  
  StreamKM++计算该数据流的一小的加权样品,它使用的k均值++算法作为随机播种技术来选择所述簇的值。
  
  D-流使用在线组件,每个输入数据记录映射到网格和离线组件计算网格密度和集群基于密度的网格。该算法采用密度衰减技术来捕获数据流的动态变化。
  
  回归:
  
  LDA增量更新时,新样本到达LDA的小二乘解。这种方法的优点在于,它执行其导致批次LDA的确切小二乘解模型的完全更新。
  
  SAIRT是二元回归树的增量版本。面对未知的参与力度,如逐步和突然漂移功能,在功能,噪音和虚拟漂移的某些区域变化的数据流时,它适应的感应模式。它监视节点和忘记实施例的从选定区域,存储在关联到树的叶子本地窗口,其余的是有用的。
我要评论
  • 物流智能转型新引擎:DeepSeek+物流

    DeepSeek 物流不仅是技术的革新,更是城市发展的重要推动力。它通过智能化手段提升物流效率、优化资源利用、减少环境影响,并为智慧城市建设提供支撑。未来,随着AI技术的不断进步,物流行业将迎来更深刻的变革。
    物流大数据服务平台
    2025-04-30 10:11:15
  • 2025年4月1日开始施行的重要新规一览

    四月,一系列新规定即将实施,包括《公共安全视频图像信息系统管理条例》、《车联网网络安全异常行为检测机制》等。
    大数据服务平台
    2025-04-02 09:31:36
  • 铁塔大数据灾害分析平台:提升自然灾害智能化预警水平

    目前,我国灾害预防面临着监测预警网络不健全、实效性不高、精准性不强,“三断”(断路、断网、断电)无法及时发现等问题,亟需建立防灾减灾预警网络,实现“灾后救助”向“灾前预防”转变的目标。
    大数据灾害分析平台
    2025-03-19 10:47:45
  • 淄博市召开大数据系统工作会议暨“三拼三比”动员部署会

    会议指出,2024年是新一轮机构改革后全市大数据系统全面履职的第一年,全市大数据系统在市委市政府的坚强领导和省大数据局的有力指导下,数据要素价值加速释放、数字经济发展步伐加快、数字政府建设深入推进、数字支撑底座更为夯实,数字淄博建设取得明显成效。
    大数据服务平台
    2025-03-18 10:07:30
  • 公司重要动态速览|海康威视、新华三、宇树科技......

    近期,智慧城市领域的企业有哪些动态呢?小编整理了一下,一起来回顾。海康威视发布视觉大模型周界摄像机;宇树科技入驻阿里速卖通AliExpress出海......
    大数据服务平台
    2025-03-16 14:10:47
  • 贵州省大数据局召开数字企业座谈会

    会上,朱宗尧介绍了全省数据工作“一体两翼三大转型”总体思路及数字产业重点发展方向,数字产业处就起草促进数字产业发展相关政策措施有关情况作了说明。
    大数据服务平台
    2025-03-10 11:14:27
版权与免责声明:

凡本站注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本站授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:智能制造网”。违反上述声明者,本站将追究其相关法律责任。

本站转载并注明自其它来源(非智能制造网)的作品,目的在于传递更多信息,并不代表本站赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、平台或个人从本站转载时,必须保留本站注明的作品第一来源,并自负版权等法律责任。如擅自篡改为“稿件来源:智能制造网”,本站将依法追究责任。

鉴于本站稿件来源广泛、数量较多,如涉及作品内容、版权等问题,请与本站联系并提供相关证明材料:联系电话:0571-89719789;邮箱:1271141964@qq.com。

不想错过行业资讯?

订阅 智能制造网APP

一键筛选来订阅

信息更丰富

推荐产品/PRODUCT 更多
智造商城:

PLC工控机嵌入式系统工业以太网工业软件金属加工机械包装机械工程机械仓储物流环保设备化工设备分析仪器工业机器人3D打印设备生物识别传感器电机电线电缆输配电设备电子元器件更多

我要投稿
  • 投稿请发送邮件至:(邮件标题请备注“投稿”)1271141964.qq.com
  • 联系电话0571-89719789
工业4.0时代智能制造领域“互联网+”服务平台
智能制造网APP

功能丰富 实时交流

智能制造网小程序

订阅获取更多服务

微信公众号

关注我们

抖音

智能制造网

抖音号:gkzhan

打开抖音 搜索页扫一扫

视频号

智能制造网

公众号:智能制造网

打开微信扫码关注视频号

快手

智能制造网

快手ID:gkzhan2006

打开快手 扫一扫关注
意见反馈
我要投稿
我知道了