正在阅读:深度学习算法助力 人工智能或将迸发出更强力量

深度学习算法助力 人工智能或将迸发出更强力量

2016-11-17 09:35:45来源:环球科学 编辑:沐子飞 关键词:机器学习芯片人工智能阅读量:30657

导读:IBM采取了一个更不同寻常的方式:他们在测试仿人脑芯片TrueNorth,希望能将其用作深度学习的硬件平台。
  【中国智能制造网 市场分析】驱动了现代人工智能革命的深度学习软件大多都是在标准的计算机硬件上运行的。然而,IBM却采取了一个更不同寻常的方式:他们在测试仿人脑芯片TrueNorth,希望能将其用作深度学习的硬件平台。
  
深度学习算法助力 人工智能或将迸发出更强力量
 
  深度学习的强大功能依赖于卷积神经网络算法,这个算法由多层节点(也称之为神经元)组成。这种神经网络可以通过“深”层节点筛选海量数据,以此在自动识别人脸或理解不同的语言等方面变得更加智能。谷歌、facebook、亚马逊和微软等公司所提供的网络服务已经在运用这些能力了。
  
  IBM在近的研究中证明,深度学习算法可以在仿人脑硬件上运行,而后者通常支持的是一种完全不同形式的神经网络。
  
  2016年9月9日,《美国国家科学院院刊》 (Proceedings of the National Academy of Sciences)刊登了IBM的研究论文。美国国防研究计划局(tDARPA)给该项研究提供了不到100万美金的资助。这笔资助是DARPA皮质处理器项目(Cortical Processor Program)的一部分,该项目旨在研究能辨认复杂模式并适应不断变化的环境的仿人脑人工智能系统。
  
  位于加利福尼亚州圣何塞的IBM Almaden研究实验室的仿人脑计算领域科学家Dharmendra Modha 表示:“新的里程碑研究清楚地证明,仿人脑计算的效率能是可以与深度学习的效果相融合的,进而为新一代更和更有效的芯片和算法的诞生铺平了道路。”
  
  2011年,IBM详细描述了TrueNorth,并推出了原型芯片。因此,TrueNorth的诞生早于2012年开始的基于卷积神经网络的深度学习革命,当然也不是为了深度学习而专门设计出的。相反,TrueNorth支持的是脉冲神经网络,后者能更加细致地模仿生物体大脑中神经元的活动。
  
  脉冲神经网络中的神经元不会在每个循环都放电,而是必须在放电之前逐渐积累电压。通常情况下,为在深度学习任务上达到所需的度,脉冲神经网络不得不经过多个循环以得到平均结果。这实际上减慢了诸如图像识别或语言处理任务的整体计算速度。
  
  深度学习专家普遍认为脉冲神经网络在深度学习方面的效率较低——至少与卷积神经网络相比是这样的。Facebook人工智能研究所主任、深度学习领域的者Yann LeCun,之前就批评过IBM的TrueNorth芯片,因为其初就是为脉冲神经网络设计的。
  
  加利福尼亚大学圣地亚哥分校人工智能组的深度学习研究者Zachary Chase Lipton表示,IBM TrueNorth的设计可能更符合神经形态计算的目标,即专注于细致地模仿和理解生物大脑。相比较而言,深度学习研究者对获取人工智能服务和产品的实际结果更感兴趣。他解释了这一差别:“这让我们想到关于鸟类和飞机之间的老套比喻,你可能会说计算机神经科学/神经形态领域更关注研究鸟类,而机器学习领域更关注理解航空动力学(不管是否有生物学的帮助)。通常情况下,深度学习领域看好专业化硬件带来的益处。神经形态芯片所关注的脉冲神经网络在深度学习领域并不热门,所以人们对它们也没有很大的兴趣。”
  
  为使TrueNorth芯片更好地适应深度学习,IBM必须开发一种新算法,让卷积神经网络在神经形态计算硬件上良好地运行。这种联合的方式在8个数据集(包括视觉和语音)上达到了IBM所谓的“几乎是高水准的”分类准确度。在好的情况下,准确度在65~97%之间。
  
  当仅使用一个TrueNorth芯片时,它只能在8个数据集中的一个上超越佳准确率。然而,IBM研究者可以通过使用8个芯片来提升深度学习技术下硬件的准确率。这使得TrueNorth能在其中3个数据集上达到或超越佳准确度。
  
  TrueNorth在测试中也能做到每秒处理1200~1600视频帧信息,这意味着单独一个TrueNorth芯片可以同时对多达100个照相机拍摄的视频实时进行模式识别。在这种情况下,我们假设每个相机使用1024个彩色像素(32*32)及24帧频的标准电视数据流信息。
  
  Lipton表示,TrueNorth在深度学习领域测试所得的这些结果也许令人印象深刻,但是还应该谨慎看待。他指出视觉数据集中的32 x 32像素图像还有些小问题。
  
  尽管如此,IBM的Modha似乎对继续在深度学习应用中测试TrueNorth充满热情。他和他的同事希望在所谓的“不受约束的深度学习”上测试芯片,这意味着在训练神经网络的过程中逐步引入硬件限制,而非在一开始就采用限制措施。
  
  Modha也指出,TrueNorth的总体设计比深度学习专属硬件更具有优势,后者仅在卷积神经网络上运行。而TrueNorth有希望让多种形式的人工智能网络在同样的芯片上运作。
  
  Modha表示:“TrueNorth不仅能够实现卷积网络的功能(尽管这并不是设计它们的初衷),而且还能够支持多样的连接形式(反馈、横向反馈和正向反馈),并能同时执行各种不同的其他算法。”
  
  Lipton说,这样的生物型芯片只有在深度学习上的表现超越其他硬件,才可能变得流行。但是他也建议说IBM可以利用其硬件专长,与谷歌和英特尔合作,共同研发深度学习领域的新型专业芯片。
  
  Lipton表示:“我认为某些神经形态芯片制造商将会利用他们在硬件加速方面的专长,来开发深度学习的应用型芯片,而非仅在进行生物模仿。”
  
  (原标题:如何让人工智能迸发出更强的力量?)
我要评论
  • 全域人工智能之城建设驶入快车道

    市科委、中关村管委会,市经济和信息化局,市发展改革委,市政务和数据局,市卫生健康委,北京经开区管委会领导出席,来自各央国企、研究机构,及京内外近500家人工智能上下游生态企业与会。
    人工智能中国智造
    2025-04-30 09:49:19
  • AI已经成为人形机器人最大的瓶颈?

    在看似繁荣的表象下,行业共识正在逐渐浮现:人工智能(AI)技术的滞后,已成为人形机器人实现真正智能化的最大瓶颈。
    人形机器人人工智能
    2025-04-28 15:32:08
  • 从“原子”到算法!人工智能领域的“元素周期表”诞生

    研究团队发现,处于同一“主族“的算法(如支持向量机与核方法)具有相似的数学内核,而位于相同“周期“的算法(如决策树与随机森林)则共享相近的泛化能力图谱。
    人工智能计算机科学
    2025-04-27 17:01:21
  • 宾利发布突破性人工智能皮革检测技术

    人工智能皮革检测系统并不能完全取代宾利训练有素的工匠的技艺。通过自动化人工检测流程,该系统能够提供最高品质的皮革,工匠们可以用它来打造精致的手工缝制细节。
    人工智能皮革检测技术
    2025-04-27 14:42:55
  • 早报|深圳大学人工智能学院正式揭牌成立;SK海力士完成96GB CXL内存模块验证

    深圳大学人工智能学院正式揭牌成立,学院建设基础学科研究中心和算力平台,与腾讯云共建产业学院;SK海力士宣布,其基于CXL 2.0标准的DDR5 96GB内存模块已通过客户验证......
    人工智能内存模块数据传输设备
    2025-04-23 10:41:12
  • 宝马押宝人工智能,能赌赢吗?

    宝马在电池续航方面也取得了显著进展,宝马第六代动力电池技术搭载大圆柱电芯,能量密度提升至300Wh/kg,支持15分钟内完成80%电量快充。
    宝马人工智能
    2025-04-16 14:58:14
版权与免责声明:

凡本站注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本站授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:智能制造网”。违反上述声明者,本站将追究其相关法律责任。

本站转载并注明自其它来源(非智能制造网)的作品,目的在于传递更多信息,并不代表本站赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、平台或个人从本站转载时,必须保留本站注明的作品第一来源,并自负版权等法律责任。如擅自篡改为“稿件来源:智能制造网”,本站将依法追究责任。

鉴于本站稿件来源广泛、数量较多,如涉及作品内容、版权等问题,请与本站联系并提供相关证明材料:联系电话:0571-89719789;邮箱:1271141964@qq.com。

不想错过行业资讯?

订阅 智能制造网APP

一键筛选来订阅

信息更丰富

推荐产品/PRODUCT 更多
智造商城:

PLC工控机嵌入式系统工业以太网工业软件金属加工机械包装机械工程机械仓储物流环保设备化工设备分析仪器工业机器人3D打印设备生物识别传感器电机电线电缆输配电设备电子元器件更多

我要投稿
  • 投稿请发送邮件至:(邮件标题请备注“投稿”)1271141964.qq.com
  • 联系电话0571-89719789
工业4.0时代智能制造领域“互联网+”服务平台
智能制造网APP

功能丰富 实时交流

智能制造网小程序

订阅获取更多服务

微信公众号

关注我们

抖音

智能制造网

抖音号:gkzhan

打开抖音 搜索页扫一扫

视频号

智能制造网

公众号:智能制造网

打开微信扫码关注视频号

快手

智能制造网

快手ID:gkzhan2006

打开快手 扫一扫关注
意见反馈
我要投稿
我知道了