潍坊鲁盛水处理设备有限公司
免费会员

当前位置:潍坊鲁盛水处理设备有限公司>>地埋式一体化污水处理设备>> 25m3/d地埋式一体化污水处理设备

25m3/d地埋式一体化污水处理设备

参  考  价面议
具体成交价以合同协议为准

产品型号

品       牌LS

厂商性质生产商

所  在  地潍坊市

更新时间:2019-11-16 10:57:41浏览次数:229次

联系我时,请告知来自 智能制造网
同类优质产品更多>
25m3/d地埋式一体化污水处理设备水解阶段
高分子有机物因相对分子量巨大,不能透过细胞膜,因此不可能为细菌直接利用。因此它们在*阶段被细菌胞外酶分解为小分子。例如纤维素被纤维素酶水解为纤维二糖与葡萄糖,淀粉被*分解麦芽糖和葡萄糖,蛋白质被蛋白酶分解为短肽与氨基酸等。这些小分子的水解产物能够溶解于水并透过细胞膜为细菌所利用。

25m3/d地埋式一体化污水处理设备

固定化微生物的固定方法
固定化方法有载体结合法、交联法、包埋法、逆胶束酶反应系统和孔网状载体截陷固定技术。
1、 载体结合法。
以共价结合、离子结合和物理吸附等将微生物固定在非水溶性的载体上。载体有葡聚糖、活性炭、胶原、琼脂糖、多孔玻璃珠、高岭土、硅胶、氧化铝、羧甲基纤维素等。在污水处理中,这种固定方式要求生物膜载体表面具某种活性基团,通常可对载体表面进行改性,达到携带活性基的目的。
2、 交联法
将微生物与2个或2个以上的官能团的试剂反应形成共价键的固定方法。交联剂有:戊二醇、双重氮联苯胺和六亚甲基二异氰酸酯。细胞间自交联是自然界普遍存在的一种现象,如活性污泥系统中菌胶团的形成以及厌氧污泥床中颗粒污泥的产生均是通过细胞间自交联实现的。为了进一步强化细胞间或酶间的这种自交联程度,可以认为的加入一些交联剂形成细胞间的稳固结合。交联剂在活性污泥系统中也有应用,有时认为地向曝气池内投加一定量的交联剂能得到更好的菌胶团,它有利于二沉池中泥水分离及有助于控制曝气池内微生物浓度。

好氧池就是通过曝气等措施维持水中溶解氧含量在4mg/l左右,适宜好氧微生物生长繁殖,从而处理水中污染物质的构筑物; 厌氧池就是不做曝气,污染物浓度高,因为分解消耗溶解氧使得水体内几乎无溶解氧,适宜厌氧微生物活动从而处理水中污染物的构筑物; 缺氧池是曝气不足或者无曝气但污染物含量较低,适宜好氧和兼氧微生物生活的构筑物。 不同的氧环境有不同的微生物群,微生物也会在环境改变的时候改变行为,从而达到去除不同的污染物质的目的。
好氧池的作用是让活性污泥进行有氧呼吸,进一步把有机物分解成无机物。去除污染物的功能。运行好是要控制好含氧量及微生物的其他各需条件的,这样才能是微生物具有大效益的进行有氧呼吸。
厌氧处理是利用厌氧菌的作用,去除废水中的有机物,通常需要时间较长。厌氧过程可分为水解阶段、酸化阶段和甲烷化阶段。

【有机污水处理工艺技术特点】
1、无需曝气,节省用电。理论上讲,好氧曝气去除1kgBOD需要耗电1.67kWh,而通过厌氧处理,可以节约电耗80%。
2、产生有价值的能源——沼气。理论上讲,厌氧降解1kgCOD可以产生0.4~0.5m3沼气,每m3沼气的燃烧热值大约为23000~27000kJ/ m3,如用于发电,1立方米沼气可发电1.50~1.80度。
3、产生污泥量少,颗粒污泥同时是有价值的接种产品。通常好氧去除1kgBOD产生0.4kg很难处理的好氧污泥;而厌氧去除1kgCOD只产生0.05kg左右的厌氧污泥,而且无需处理,可以作为有价值的种泥商品。
4、由于合成新生细胞少,合成细胞所需的氮、磷营养盐也少。好氧反应对氮、磷的需求比例是:BOD:N:P=100:5:1,而厌氧反应对应的比例为:BOD:N:P=300:5:1。
5、处理容积负荷高,占地小。
6、抗冲击负荷性强。
7、一般好氧法处理氨氮大约在30%左右,而好氧与厌氧结合氨氮的处理能力可以达到80%左右。
虽然厌氧在处理高浓度有机废水方面具有较大优势,但是它同时也存在一定的缺点,如运行启动时间较长,需要较高的管理水平,容易产生臭味,特别是对于规模较小的工业处理工程更是如此。但是在厌氧反应中可以放弃反应时间长、控制条件要求高的甲烷发酵阶段,将反应控制在酸化阶段,这样较之全过程的

厌氧生物处理是在厌氧条件下,形成了厌氧微生物所需要的营养条件和环境条件,利用这类微生物分解废水中的有机物并产生甲烷和二氧化碳的过程。 高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。
(1)水解阶段 水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。
(2)发酵(或酸化)阶段 发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,
在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。
(3)产乙酸阶段 在产氢产乙酸菌的作用下,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。
(4)甲烷阶段 这一阶段,乙酸、氢气、碳酸、甲酸和甲醇被转化为甲烷、二氧化碳和新的细胞物质。

25m3/d地埋式一体化污水处理设备有机污水处理工艺技术特点与应用
在生物处理中,废水中的有机物作为微生物的营养源被微生物利用,终分解为稳定的无机物或合成细胞物质而以污泥物态由水中分离,从而使废水得到净化。在好氧处理工艺中,微生物通过利用氧气将有机污染物氧化为CO2和微生物的细胞物质(污泥)。随着氧化分解过程,大量能量被释放,用于微生物降解有机物转化为细胞物质,即好氧污泥;而厌氧处理工艺则是在无氧的条件下,大多数有机污染物的能量转化为甲烷的形式,结果只有很少部分用于合成细胞物质,而产生的沼气可作为热能被再利用。因此从生物反应的原理上,显而易见,厌氧处理存在很大的优势。
整个厌氧过程分为水解、发酵、产乙酸产氢阶段、产甲烷阶段。

活性炭纤维的特殊功能及使用注意事项
随着工业化生产的发展和城市人口的增加,都市区内的生活废水处理量已越来越大,在废水中特别是过滤与分离工业废水中的有机污染物有大量增加的趋势,并且化工、冶金、炼焦、轻工等产业中的废水为主要的污染源,其含有的有毒物和有害物已在对生态环境构成威胁。ACF适用于各种有机废水的处理,可对含氯废水,制药厂废水,*废水,有机染料废水,四苯废水,已内酰胺废水,二甲基乙酰胺和异丁醇废水进行处理。其吸附能力比粉末活性炭的吸附能力高得多,尤其适用于高平衡浓度时,每克ACF的吸附量为粉末活性炭的近3倍,在升高温度后,其吸附能力更高。用剑麻基ACF可有效的去除水中的各种有机染料如亚甲基兰、结晶紫、铬兰黑R等,其去除率高达*,含钇的确良沥青基ACF可有效的吸附酸性染料如酸性兰9、酸性兰74、酸性橙10、酸性橙51等,也用于直接染料如直接兰19、直接黄11、直接黄50及碱性染料碱性棕1、碱性青紫3等。对炼油废水和处理结果表明,用ACF处理炼油废水其对浊度的有效净化率为*,挥发酚为*,COD为88·3%,油98·4%,并对二氧化硫、二氧化碳、碱度和总磷酸盐均有净化作用,对高浓度和成分复杂的页岩油干馏废水的处理后COD可达低于2 000 mg/

SBR工艺采用间歇进水、间歇排水,SBR反应池有一定的调节功能,可以在一定程度上起到均衡水质、水量的作用。通过供气系统、搅拌系统的设计,自动控制方式的设计,闲置期时间的选择,可以将SBR工艺与调节、水解酸化工艺结合起来,使三者合建在一起,从而节约投资与运行管理费用。
在进水期采用水下搅拌器进行搅拌,进水电动阀的关闭采用液位控制,根据水解酸化需要的时间确定开始曝气时刻,将调节、水解酸化工艺与SBR工艺有机的结合在一起。反应池进水开始作为闲置期的结束则可以使整个系统能正常运行。具体操作方式如下所述:
进水开始既为闲置结束,通过上一组SBR池进水结束时间来控制;
进水结束通过液位控制,整个进水时间可能是变化的。
水解酸化时间由进水开始至曝气反应开始,包括进水期,这段时间可以根据水量的变化情况与需要的水解酸化时间来确定,不小于在小流量下充满SBR反应池所需的时间。
曝气反应开始既为水解酸化搅拌结束,曝气反应时间可根据计算得出。
沉淀时间根据污泥沉降性能及混合液污泥浓度决定,它的开始即为曝气反应的结束。

发酵(或酸化)阶段
在这一阶段,上述小分子的化合物在发酵细菌(即酸化菌)的细胞内转化为更为简单的化合物并分泌到细胞外。这一阶段的主要产物有挥发性脂肪酸(简写为VFA)、醇类、乳酸、二氧化碳、氢气、氨、硫化氢等。与此同时,酸化细菌也利用部分物质合成新的细胞物质,因此未经酸化废水厌氧处理时会产生更多的剩余污泥。酸化菌对pH有很大的容忍性,产酸可在pH到4的条件下进行,产甲烷菌则有它自己的pH:6.5~7.5,超出这个范围则转化速度将减慢。
产乙酸产氢阶段
在此阶段,上一阶段的产物被进一步降解为乙酸(又称醋酸)、氢和二氧化碳,这是终产甲烷反应的反应底物。
4.产甲烷阶段(高的阶段)
产甲烷菌是一种严格的厌氧微生物,与其它厌氧菌比较,其氧化还原电位非常低(<-330mV)。

酸化池中的反应是厌氧反应中的一段。 厌氧池是指没有溶解氧,也没有硝酸盐的反应池。缺氧池是指没有溶解氧但有硝酸盐的反应池。
酸化池---水解、酸化、产乙酸,限制甲烷化,有pH值降低现象。工艺简单,易控制操作,可去除部分COD。目的提高可生化性; 厌氧池---水解、酸化、产乙酸、甲烷化同步进行。需要调节pH,不易操作控制,去除大部分COD。目的是去除COD。
缺氧池---有水解反应,在脱氮工艺中,其pH值升高。在脱氮工艺中,主要起反硝化去除硝态氮的作用,同时去除部分BOD。也有水解反应提高可生化性的作用。
水解酸化池内部可以不设曝气装置,控制停留时间再水解、酸化阶段,不出现厌氧产气阶段,前两个阶段的COD去除率不是很高,因为他的目的只是将大分子的变成小分子有机物,一般去除率在20%左右,产气阶段的COD去除率一般在40%左右,但这是产生的硫化氢气体要进行除臭处理,且达到产气阶段的停留时间要较前两阶段长,也就是要出现厌氧状态。缺缺氧池内要设置曝气装置,控制溶解氧在0.3-0.8mg/l,利用兼氧微生物及生物膜来降解废水中的有机物,接触氧化池内的曝气器要慎重选择,既要保证供氧量,又要确保有利于生物膜的脱落、更新。一般不选用微孔曝气器作为池底的曝气器。

微生物的固定化技术:
固定化微生物
以与固定化酶相同的固定方法将酶活力强的微生物体固定在载体上,微生物体本身是多酶体系的固定化载体,将整个细胞固定化更有利于保持其原有活性,甚至可提高活性。有死细胞固定化和生长细胞固定化两种。水解酸化的产物主要是小分子有机物,使废水中溶解性有机物显著提高,而微生物对有机物的摄取只有溶解性的小分子物质才可直接进入细胞内,而不溶性大分子物质首先要通过胞外酶的分解才得以进入微生物体内代谢。例如天然胶联剂(主要为淀粉类),首先被转化为多糖,再水解为单糖。纤维素被纤维素酶水解成纤维二糖与葡萄糖。半纤维素被聚木糖酶等水解成低聚糖和单糖。
水解过程较缓慢,同时受多种因素的影响,是厌氧降解的限速阶段。在酸化这一阶段,上述*阶段形成的小分子化合物在发酵细菌即酸化菌的细胞内转化为更简单的化合物并分泌到细菌体外,主要包括挥发性有机酸(VFA)、乳醇、醇类等,接着进一步转化为乙酸、氢气、碳酸等。酸化过程是由大量发酵细菌和产乙酸菌完成的,他们绝大多数是严格厌氧菌,可分解糖、氨基酸和有机酸。

会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~
在线留言