潍坊鲁盛水处理设备有限公司
免费会员

当前位置:潍坊鲁盛水处理设备有限公司>>地埋式一体化污水处理设备>> 10m3/d地埋式一体化污水处理设备

10m3/d地埋式一体化污水处理设备

参  考  价面议
具体成交价以合同协议为准

产品型号

品       牌LS

厂商性质生产商

所  在  地潍坊市

更新时间:2019-11-16 10:57:44浏览次数:224次

联系我时,请告知来自 智能制造网
同类优质产品更多>
10m3/d地埋式一体化污水处理设备废水的氧化技术主要是运用超临界水氧化、光催化氧化、无荆催化氧化、电化学氧化、化学氧化与生物氧化相结合等手段处理废水的技术。

10m3/d地埋式一体化污水处理设备

污水的湿地处理工艺
污水经过土壤渗漏,植物吸收,特别与地表根垫层及节根部微生物相接触后,软化水设备渗入净化沟内。这一过程使污水在耐水性植物、微生物及土壤联合作用下,通过物理、化学、物理-化学及生物反应使污水得以净化,其作用机理为[1]:
异养菌+有机质+DO→CO2+NH3+H2O
污水中污染物质的净化机理为[2]:
BOD的去除:BOD去除机理包括过滤、吸附和生物氧化作用,其主要氧源是大气复氧和水生维管束植物。
SS的去除:沉淀、过滤、吸附作用。
氮的去除:反硝化作用,挥发和作物吸收。
磷的去除:作物的吸收和土壤的吸附固定。
病原体的去除:吸附作用、过滤作用、生物吞噬及其它不利于病原体生存的条件。
另外,由于净水沟是泥坝沟,沟边生有杂草,所以在沟水接近出水泵房处,设立2~3处拦草网,以保证出水水质。
进入净水沟处理后的水达到排放标准,排入小海生态塘进行进一步稳定利用。排水泵房处,由于水源稳定,可进行集中抽水,一般每天启动3台泵抽水6~8h即可满足要求。另外,由于出水中有大量的微生物,所以集水井要求容积尽可能大,并采用周边进水方式。同时要在集水井内水泵喇叭口以上设置2~3层铁丝网,减少水流的冲击,以此消除产生生物泡沫的可能。

水解酸化过程中,进出水中的COD 和BOD5 浓度的变化可能有以下三种情况:
1. 降低,但大不超过20 %~30 %;
2. 与原水持平(如以葡萄糖为水解酸化底物时即出现此情形) ;
3. 略有升高(高分子复杂有机物的水解酸化时) 。
但基于实际废水中基质的复杂性、参与水解酸化过程的微生物的多样性及环境条件的多变性,上述三种情形亦可能同时兼而有之。对含有较多难降解的高分子复杂有机物的废水而言, 借助于水解酸化工艺可提高废水的可生化性,即提高废水BOD5 / COD 比。水解酸化对高分子复杂有机物的分解是通过微生物的开环酶的作用破坏多环化合物的环而实现的。环的开裂是多环物质水解过程中的速率控制步骤。
厌氧微生物对环的开裂有两个途径:
1. 还原性代谢途径, 即通过苯环加氢还原使环裂解(见图1)
2. 非还原性代谢, 即通过苯环加水而羟基化。另有研究表明,对于纤维和脂类物质而言,其厌氧水解还可通过β- 氧化途径完成。Kluge 等人报道,还原性芳香环的裂解需脱羧酶、还原酶和裂解酶的参与。而Voger 等人则报道了多种参与厌氧芳烃裂解的酶体系,表明厌氧微生物体内具有易于诱导较为多样化的开环酶体系,这便为杂环烃及芳香烃等复杂有机物的厌氧水解和酸化提供了物质条件和客观保证, 使它们易于被裂解而利于有效的生物处理。

废水氧化处理技术介绍
氧化技术 近年来,氧化技术处理废水的研究取得了显著进展。废水的氧化技术主要是运用超临界水氧化、光催化氧化、无荆催化氧化、电化学氧化、化学氧化与生物氧化相结合等手段处理废水的技术。
1、 无剂催化氧化技术 采用无剂催化氧化处理有机废水,尤其是处理有毒有害、难于生物降解的有机污染物,是当前水处理技术研究的热点课题。 活性嵌可作为废水催化氧化反应的催化剂。与Fenton试剂法相比,COD去除率提高了1.75倍。还可利用金属氧化物为催化剂,来提高臭氧的利用效率和氧化能力。
2、 光催化氧化技术 光氧化常用的催化剂是 TiO2、H2O2-草酸铁等无机试剂。通常的悬浮相TiO2光催化氧化法存在着催化剂易失活、易凝聚和难分离等固有弊端。将TiO2负载在海沙上,作为光氧化反应的催化剂克服了上述缺点。还可将TiO2粉末固定在泡沫镍上的光催化固定技术,降解废水中的磺基水杨酸。利用TiO2催化降解有机物时,可利用太阳能来代替UV光源。
3、 电化学氧化技术 近年来电化学水处理法得到了改进,在传统电化学法的基础上增加了氧化、催化氧化或光催化氧化作用,有效地突破了微电解技术的局限,展示了电化学水处理技术的绿色特点。利用光透电极和纳米结构TiO2作为工作电极和光催化剂,采用光电催化法对水中染料进行电解,发现与光致分解、光催化降解相比,光电催化降解对三种染料一品红、铬蓝K、铬黑T溶液的降解效果好。采用高压脉冲放电降解法去除水中苯乙酮的研究也取得了较好的效果。 液电脉冲处理水中苯乙酮过程中,在通入O2时,经30min放电处理,苯乙酮降解率可达92%。液电脉冲等离子降解法涉及等离子物理、等离子化学、流体力学、热力学、生物、电工、环境保护等学科间的交叉,这种降解法具备了光化学氧化、高温热降解、超临界水氧化以及液电空化降解等多种水处理法的综合效应。

10m3/d地埋式一体化污水处理设备多介质过滤器反冲洗的必要性
多介质过滤器在过滤过程中,原水中的悬浮物等被滤料层截留吸附并不断地在滤料层中积累,于是滤层孔隙逐渐被污物堵塞,在滤层表面形成滤饼,过滤水头损失不断增加。当达到某一限度时,滤料需进行清洗,使滤层恢复工作性能,继续工作。
多介质过滤器过滤时由于水头损失增加,水流对吸附在滤料表面的污物的剪切力变大,其中有些颗粒在水流的冲击下移到下层滤料中去,终会使水中的悬浮物含量不断上升,水质变差,当杂质透过滤层时,过滤器失去过滤效果。因此,到一定程度时,需要清洗滤料,以便恢复滤料层的纳污能力。
多介质过滤器污水中的悬浮物中含有大量有机物,*滞留在滤层中会导致滤层中细菌微生物富集繁殖,发生厌氧现象,需定期清洗滤料。

水解酸化在水处理中的应用
(1)啤酒厂废水。
采用水解酸化-接触氧化-气浮工艺处理,经水解酸化处理后出水的BOD5/CODCr 由原来的0.51 提高至0.72。由于水解酸化段的这种对有机物的去除和对BOD5/CODCr 的改善,不仅有利于后续好氧处理功能的充分发挥,缩短了整个系统的总HRT,而且使系统具有较强的抗冲击负荷能力而运行稳定。CODCr 和BOD5 去除率分别可达到96.9 %和98.7 %。
(2)屠宰厂废水。
屠宰厂的废水的可生化性高,但悬浮物浓度很高,需要预处理。采用的工艺为水解酸化-生物吸附再生结合处理系统,CODCr 去除率可达93 %以上。
(3)淀粉厂废水。
某淀粉加工厂排放的废水,其中大分子物质较多,故采用水解酸化-接触氧化工艺处理。实验结果显示,原水经过水解阶段,BOD5/CODCr 从0.69 上升到0.82,使后续的好氧处理效率得到提高。CODCr 和BOD5 去除率分别可达到97 %和98 %。
(4)晴纶废水。
某厂干法晴纶工艺废水采用两相厌氧反应器处理,出水BOD5/CODCr 由原来的0.43 上升到0.58~0.71,可生化性得到了很大的提高。
(5)苯胺类废水。
某化工厂废水的可生化性不高,不太适合生化处理。但采用厌氧水解-生物接触氧化法处理这类化工废水。结果表明,该工艺厌氧段能增强系统耐冲击负荷能力,并有效地提高废水的可生化性,使BOD5/CODCr 值上升到0.4。好氧段投加*菌STR-NiTRO 能有效地去除废水中的苯胺。终CODCr、BOD5 和苯胺的去除率分别为85.9 %、78 %和97.8 %。

水处理技术的概述
这促使环境科学家和环保工程师积极开发和应用水处理技术. 水处理技术的开发,正在有力推动环境科学与工程学科的发展,它是开展环境科学与工程学科创新研究的一条源泉之路,对于人类社会的可持续发展具有重要的现实意义。
l 膜分离技术 膜分离技术是近二、三十年内发展起来的。与常规分离方法相比,膜分离过程具有能耗低、单级分离效率高、工艺简单、*等特点,在废水处理中可实现水的闭路循环,除污的同时变废为宝,是符合可持续发展战略的绿色技术。膜分离技术主要包括微滤(MF)、超滤(UF)、纳滤(NF)反渗透(RO)和电渗析等。近年来这些技术在水处理的应用愈来愈显示生命力。 世界上每天约有500万m 的水通过膜分离处理为了适应水处理的需要,膜材料的性能逐步得以改进采用无毒无害、可生物降解的材料制备超滤膜。 NF膜在水的软化方面显示了其它技术*的优越性,NF90膜在海岛饮用水制备中可有效地去除对人体健康不利的Ca2+、Mg2+等硬度。在较低的操作压力(<1.0MPa)下,总脱盐率≥8l%,产水量可达144t/d,淡化水符合生活饮用水标准。 电渗析作为绿色水处理技术近年来研究较多。有人采用改性异向膜电渗析法处理化纤厂粘胶单丝淋洗废水(去酸水),在工艺上实现了污水闭路循环,消除了H2SO4和Zn的污染,并把溶解固体浓缩到190g/L,再进行多效蒸发来回收多余的Na2SO4。浓缩的H2SO4和ZnSO4溶液则返回凝固浴再用,淡化水中的总溶解固体(TDS)下降到0.7g/L以下,因无硬度,故可作洗涤用水。 膜分离技术正在成为水处理研究与应用的热点,其在水的回用方面起着难以替代的作用。将膜分离技术与绿色氧化技术、生物处理技术联合,用于废水的处理及回用是一个颇有前途的研究与应用方向。

水解酸化工艺与单独的厌氧或好氧工艺相比,具有以下特点:
1. 由于在厌氧阶段可大幅度地去除废水中悬浮物或有机物, 其后续好氧处理工艺的污泥量可得到有效地减少, 从而设备容积也可缩小。有报道, 在实践中, 厌氧- 好氧工艺的总容积不到单独好氧工艺的一半;
2. 厌氧工艺的产泥量远低于好氧工艺(仅为好氧工艺的1/ 10~1/ 6) ,并已高度矿化,易于处理。同时其后续的好氧处理所产生的剩余污泥必要时可回流至厌氧段, 以增加厌氧段的污泥浓度同时减少污泥的处理量;
3. 厌氧工艺可对进水负荷的变化起缓冲作用,从而为好氧处理创造较为稳定的进水条件;
4. 厌氧处理运行费用低, 且其对废水中有机物的去除亦可节省好氧段的需氧量, 从而节省整体工艺的运行费用;
5. 重要的是当将厌氧控制在水解酸化阶段时, 可为好氧工艺提供优良的进水水质(即提高废水的可生化性) 条件,提高好氧处理的效能,同时可利用产酸菌种类多、生长快及对环境条件适应性强的特点,以利于运行条件的控制和缩小处理设施的容积。

会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~
在线留言