工控摘要:IGBT,PowerMOSFET和BipolarPowerTransistor等功率器件,都需要有充分的保护以避免欠压、米勒效应、缺失饱和、过载、短路造成的损害。本文通过Avago参与的八大问答讨论隔离驱动IGBT等功率器件的技巧。
1、如何避免米勒效应?
IGBT操作时所面临的问题之一是米勒效应的寄生电容。这种效果是明显的在0到15V类型的门极驱动器(单电源驱动器)。门集-电极之间的耦合,在于IGBT关断期间,高dV/dt瞬态可诱导寄生IGBT道通(门集电压尖峰),这是潜在的危险。
当上半桥的IGBT打开操作,dVCE/dt电压变化发生跨越下半桥的IGBT。电流会流过米勒的寄生电容,门极电阻和内部门极驱动电阻。这将倒至门极电阻电压的产生。如果这个电压超过IGBT门极阈值的电压,可能会导致寄生IGBT道通。
有两种传统解决方案。首先是添加门极和发射极之间的电容。第二个解决方法是使用负门极驱动。*个解决方案会造成效率损失。第二个解决方案所需的额外费用为负电源电压。
解决方案是通过缩短门极-发射极的路径,通过使用一个额外的晶体管在于门极-发射极之间。达到一定的阈值后,晶体管将短路门极-发射极地区。这种技术被称为有源米勒钳位,提供在我们的ACPL-3xxJ产品。你可以参考Avago应用笔记AN5314
2、故障保护功能有哪些?都是集成在隔离驱动器里吗?
3种故障保护功能都集成到Avago的高集成栅极驱动器ACPL-33xJ里-UVLO(以避免VCC2电平不足够时开启IGBT),DESAT(以保护IGBT过电流或短路),和米勒钳位(以防止寄生米勒电容造成的IGBT误触发)
3、在哪些应用场合需要考虑米勒效应的影响?
IGBT操作时所面临的问题之一是米勒效应的寄生电容。这种效果是明显的在0到15V类型的门极驱动器(单电源驱动器)。门集-电极之间的耦合,在于IGBT关断期间,高dV/dt瞬态可诱导寄生IGBT道通(门集电压尖峰),这是潜在的危险。
当上半桥的IGBT打开操作,dVCE/dt电压变化发生跨越下半桥的IGBT。电流会流过米勒的寄生电容,门极电阻和内部门极驱动电阻。这将倒至门极电阻电压的产生。如果这个电压超过IGBT门极阈值的电压,可能会导致寄生IGBT道通。
有两种传统解决方案。首先是添加门极和发射极之间的电容。第二个解决方法是使用负门极驱动。*个解决方案会造成效率损失。第二个解决方案所需的额外费用为负电源电压。
解决方案是通过缩短门极-发射极的路径,通过使用一个额外的晶体管在于门极-发射极之间。达到一定的阈值后,晶体管将短路门极-发射极地区。这种技术被称为有源米勒钳位,提供在我门的ACPL-3xxJ产品。
4、对于工作于600V直流母线的30~7、1200VIGBT而言,ACPL-33x、ACPL-H342这5颗带miller钳位保护的栅极驱动光耦能否仅以单电源供电就能实现高可靠性驱动,相比于传统的正负供电,可靠性是更高,还是有所不足?
AvagoACPL-332J,ACPL-333J以及ACPL-H342的门极驱动光耦可以输出电流2.。这些产品适合驱动1200V,100A类型的IGBT。
1)当使用负电源,就不需要使用米勒箝位,但需花额外费用在负电源上。
2)如果只有单电源可使用,那么设计者可以使用内部内置的有源米勒箝位。
这两种解决方法一样可靠。米勒箝引脚在不使用时,需要连接到VEE。
5、欠压,缺失饱和如何更好的被避免?
AVAGO门极驱动光耦带有欠压闭锁(UVLO)保护功能。当IGBT故障时,门极驱动光耦供电的电压可能会低于阈值。有了这个闭锁保护功能可以确保IGBT继续在低电阻状态。
智能门极驱动光耦,HCPL-316J和ACPL-33xJ,附带DESAT检测功能。当DESAT引脚上的电压超过约7V的内部参考电压,而IGBT仍然在运行中,后约5μs,Fault引脚改成逻辑低状态,以通知MCU/DSP。
在同一时间,那1X小粒晶体管会导通,把IGBT的栅极电平通过RG电阻来放电。由于这种晶体管比实际关断晶体管更小约50倍,IGBT栅极电压将被逐步放电导致所谓的软关机。
6、光伏逆变器是安装在电厂,环境温度相当恶劣,光耦的工作环境温度范围?
工作环境温度范围可达-40°C至105°C。在工业应用情况下是足够的。如果客户需要更高的工作温度,R2Coupler光耦可以运作在扩展温度达到125°C。
7、光耦绝缘耐压多高?
门极驱动光耦有不同的封装。每个封装都有其自身的特点-如不同的爬电距离和间隙,以配合不同的应用。不同的爬电距离和间隙对应于不同的工作绝缘电压,Viorm。zui大Viorm从566V至2262V之间。
8、光耦栅极驱动器zui高的输出电流是多少?
根据选择的器件型号,Avago的光耦门极驱动器zui大输出电流可以达到0.4A,0.6A,1.0A,1.,2.,3.0A,4.0A以及5.0A。
1、如何避免米勒效应?
IGBT操作时所面临的问题之一是米勒效应的寄生电容。这种效果是明显的在0到15V类型的门极驱动器(单电源驱动器)。门集-电极之间的耦合,在于IGBT关断期间,高dV/dt瞬态可诱导寄生IGBT道通(门集电压尖峰),这是潜在的危险。
当上半桥的IGBT打开操作,dVCE/dt电压变化发生跨越下半桥的IGBT。电流会流过米勒的寄生电容,门极电阻和内部门极驱动电阻。这将倒至门极电阻电压的产生。如果这个电压超过IGBT门极阈值的电压,可能会导致寄生IGBT道通。
有两种传统解决方案。首先是添加门极和发射极之间的电容。第二个解决方法是使用负门极驱动。*个解决方案会造成效率损失。第二个解决方案所需的额外费用为负电源电压。
解决方案是通过缩短门极-发射极的路径,通过使用一个额外的晶体管在于门极-发射极之间。达到一定的阈值后,晶体管将短路门极-发射极地区。这种技术被称为有源米勒钳位,提供在我们的ACPL-3xxJ产品。你可以参考Avago应用笔记AN5314
2、故障保护功能有哪些?都是集成在隔离驱动器里吗?
3种故障保护功能都集成到Avago的高集成栅极驱动器ACPL-33xJ里-UVLO(以避免VCC2电平不足够时开启IGBT),DESAT(以保护IGBT过电流或短路),和米勒钳位(以防止寄生米勒电容造成的IGBT误触发)
3、在哪些应用场合需要考虑米勒效应的影响?
IGBT操作时所面临的问题之一是米勒效应的寄生电容。这种效果是明显的在0到15V类型的门极驱动器(单电源驱动器)。门集-电极之间的耦合,在于IGBT关断期间,高dV/dt瞬态可诱导寄生IGBT道通(门集电压尖峰),这是潜在的危险。
当上半桥的IGBT打开操作,dVCE/dt电压变化发生跨越下半桥的IGBT。电流会流过米勒的寄生电容,门极电阻和内部门极驱动电阻。这将倒至门极电阻电压的产生。如果这个电压超过IGBT门极阈值的电压,可能会导致寄生IGBT道通。
有两种传统解决方案。首先是添加门极和发射极之间的电容。第二个解决方法是使用负门极驱动。*个解决方案会造成效率损失。第二个解决方案所需的额外费用为负电源电压。
解决方案是通过缩短门极-发射极的路径,通过使用一个额外的晶体管在于门极-发射极之间。达到一定的阈值后,晶体管将短路门极-发射极地区。这种技术被称为有源米勒钳位,提供在我门的ACPL-3xxJ产品。
4、对于工作于600V直流母线的30~7、1200VIGBT而言,ACPL-33x、ACPL-H342这5颗带miller钳位保护的栅极驱动光耦能否仅以单电源供电就能实现高可靠性驱动,相比于传统的正负供电,可靠性是更高,还是有所不足?
AvagoACPL-332J,ACPL-333J以及ACPL-H342的门极驱动光耦可以输出电流2.。这些产品适合驱动1200V,100A类型的IGBT。
1)当使用负电源,就不需要使用米勒箝位,但需花额外费用在负电源上。
2)如果只有单电源可使用,那么设计者可以使用内部内置的有源米勒箝位。
这两种解决方法一样可靠。米勒箝引脚在不使用时,需要连接到VEE。
5、欠压,缺失饱和如何更好的被避免?
AVAGO门极驱动光耦带有欠压闭锁(UVLO)保护功能。当IGBT故障时,门极驱动光耦供电的电压可能会低于阈值。有了这个闭锁保护功能可以确保IGBT继续在低电阻状态。
智能门极驱动光耦,HCPL-316J和ACPL-33xJ,附带DESAT检测功能。当DESAT引脚上的电压超过约7V的内部参考电压,而IGBT仍然在运行中,后约5μs,Fault引脚改成逻辑低状态,以通知MCU/DSP。
在同一时间,那1X小粒晶体管会导通,把IGBT的栅极电平通过RG电阻来放电。由于这种晶体管比实际关断晶体管更小约50倍,IGBT栅极电压将被逐步放电导致所谓的软关机。
6、光伏逆变器是安装在电厂,环境温度相当恶劣,光耦的工作环境温度范围?
工作环境温度范围可达-40°C至105°C。在工业应用情况下是足够的。如果客户需要更高的工作温度,R2Coupler光耦可以运作在扩展温度达到125°C。
7、光耦绝缘耐压多高?
门极驱动光耦有不同的封装。每个封装都有其自身的特点-如不同的爬电距离和间隙,以配合不同的应用。不同的爬电距离和间隙对应于不同的工作绝缘电压,Viorm。zui大Viorm从566V至2262V之间。
8、光耦栅极驱动器zui高的输出电流是多少?
根据选择的器件型号,Avago的光耦门极驱动器zui大输出电流可以达到0.4A,0.6A,1.0A,1.,2.,3.0A,4.0A以及5.0A。
上一篇:提高功率因数方法分析
全年征稿/资讯合作
联系邮箱:1271141964@qq.com
免责声明
- 凡本网注明"来源:智能制造网"的所有作品,版权均属于智能制造网,转载请必须注明智能制造网,https://www.gkzhan.com。违反者本网将追究相关法律责任。
- 企业发布的公司新闻、技术文章、资料下载等内容,如涉及侵权、违规遭投诉的,一律由发布企业自行承担责任,本网有权删除内容并追溯责任。
- 本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
- 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
2025第十一届中国国际机电产品交易会 暨先进制造业博览会
展会城市:合肥市展会时间:2025-09-20