3 SCALE的主要工作模式
3.1 直接模式
在直接模式下,各路IGBT将独立地工作。该模式可用于已产生死区时间的PWM信号的驱动,也可用于独立工作的各路IGBT。将MOD输入与V相连,RC1和RC2接地,即为直接模式。在直接模式下,状态输出SO1和SO2分别返回,因此当出现故障时,可以方便地确定故障出现在那一路。
3.2 半桥模式
通过与RC1和RC2相连的RC网络可获得数百纳秒的死区时间。当输入端B为低电平时,两路IGBT都被关断。将MOD输入接地即为半桥模式,输入IA为PWM输入,IB为使能输入。在VL/R输入端接上4.7V齐纳二极管可使输入端IA和IB设置在TTL电平。由于该模式下的状态输出SO1和SO2连接在一起,因此,两路故障为“或”的关系。当RC网络为10kΩ/100pF时,死区时间为500s。
4 引脚功能
现以SCALE中的2SD31为例,给出该模块的引脚功能,图4给出了2SD31的引脚分布图。
4.1 输入部分引脚功能
GND:电源地;
VDC:电源+15V,供DC/DC电源使用;
VDD:电源+15V,供LDI001使用;
VL/R:用来设置输入端InA和InB的施密特触发器的开关阈值。当输入信号为加在VL/R端电压的2/3时,开通;为1/3时关断;
MOD:模式选择;
INA:信号输入端A;
INB:信号输入端B;
SO1:状态输出1;
SO2:状态输出2;
RC1:产生#1路死区时间的RC网络;
RC2:产生#2路死区时间的RC网络;
RC端:设置死区时间的RC网络。
在半桥模式中,将RC网络与各RC端相连接可确定对应各路的死区时间。死区时间随温度可能有很小的漂移。所接电阻不允许小于5kΩ。RC网络必须要按图连接,并将电阻与VCC连接,电容接地。表2给出了RC网络与死区时间的对应关系。
表2 RC网络与死区时间
电阻(kΩ) 电容(pF) 死区时间
10 47 200ns
10 100 500ns
15 120 1.1μs
22 150 2.1μs
33 220 4.6μs
4.2 输出部分引脚功能
G端(栅极):与IGBT栅极相连,并用15V驱动。
E端(发射极):与IGBT发射极直接相连,且连线应尽可能地短。
C端(集电极):用来检测开通时IGBT的电压降,因此 必须直接与IGBT集电极相连。对于1200V和1300V模块,应用2个或3个1N4007二极管来满足140%的耐压要求。使用普通高压二极管即可,一般不需用高压快恢复二极管。
Rth端(参考电阻):通过接在Rth端的参考电阻可确定IGBT的保护关断阈值。E端的参考电位、参考电阻必须尽可能地靠近IGBT模块。当C端的电压超过Rth端的电压时,将启动IGBT保护功能。此时电流源将提供150μA的电流。
参考电阻值可通过下列公式来计算: Rth=Vth/150μA
若Vth为5.85V时,Rth应选择39 kΩ的电阻。
5 结束语
智能化IGBT驱动板SCALE具有驱动能力强、可靠性高、具有多种保护功能等特点,它不但能在正常工作状态下给IGBT提供所需的驱动功率;而且可在异常工作状态下保护IGBT,同时还能使电力电子系统中的IGBT有很好的替换特性。因此,使用高性能的驱动电路板SCALE是提高电子产品品质和可靠性,从而增强其竞争力的关键之一。
上一篇:天然气露点仪选择
免责声明
- 凡本网注明"来源:智能制造网"的所有作品,版权均属于智能制造网,转载请必须注明智能制造网,https://www.gkzhan.com。违反者本网将追究相关法律责任。
- 企业发布的公司新闻、技术文章、资料下载等内容,如涉及侵权、违规遭投诉的,一律由发布企业自行承担责任,本网有权删除内容并追溯责任。
- 本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
- 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
2025第十一届中国国际机电产品交易会 暨先进制造业博览会
展会城市:合肥市展会时间:2025-09-20