产品|公司|采购|资讯

介质损耗测试仪

参考价 ¥ 68000
订货量 ≥1
具体成交价以合同协议为准
  • 公司名称北京智德创新仪器设备有限公司
  • 品       牌智德创新
  • 型       号ZJD-87
  • 所  在  地北京市
  • 厂商性质生产厂家
  • 更新时间2023/4/3 9:36:34
  • 访问次数420
在线询价收藏产品 进入展商展台

联系我们时请说明是 智能制造网 上看到的信息,谢谢!

北京智德创新仪器设备有限公司成立十年来一直专注于电学,燃烧,力学,热学、机械等仪器的研究与生产。服务行业包括:石油/化工、航空航天、科研院校、汽车/零部件、光伏/发电、电线电缆、电子/电器、涂料等。公司注册资金 6000 万,是集研发、生产、销售为一体的高科技企业。是以中国航空航天研究院、中科院为重要依托。联合清华大学、北京航空航天大学、北京工业大学精仪系专家作为公司技术团队。公司总部坐落于美丽富饶的政治经济文化交流中心—北京市,物华天宝,人杰地灵。

北京智德创新仪器设备有限公司自创建以来,一直保持着健康稳定的发展态势,并以超过30%的年均增长速度快速持续发展,完善的客户服务体系,确保了中航时代产品的设计*,质量稳定,供货及时和服务周到。公司拥有一批专业从事设计、制造、安装、调试及售后服务的员工队伍。在工程设计和技术研发上,公司拥有部级高级工程师的专家团队、勇于创新的中青年专业技术人员和项目人员。

企业愿景:

经营宗旨

员工满意

客户满意

股东满意

社会责任

智德创新的使命

提供质优仪器设备

服务超出客户期望

经营理念

忠诚才有信任

敬业才有尊重

投入才有回报

主动才有创新

智德创新的价值观

平等地尊重每一位员工

永远都把真相告诉公众

诚实守信是基本的准则

企业文化:

成为员工自豪的企业          

成为客户信赖的企业

成为社会尊重的企业  



电压击穿试验仪,介电常数测试仪,体积表面电阻率测定仪,塑料摩擦磨损试验机
介质损耗测试仪适宜于在高电压下测量电力电缆、高压套管、电力电容器、 电抗器、互感器等高压电力设备的电容量及损耗角正切值tgδ,以及各种固体或液体绝缘材料的介电常数(ε)及介损值tgδ,也可测量高压变压器或电压互感器的比差和角差。电桥可外接电流互感器以扩大量程,测量大的电力电容器时本电桥为四端测量具有引线补偿装置,使测量精度提高,消除接线电阻引起的附加误差。
介质损耗测试仪 产品信息

介质损耗测试仪型号及参数:

项目/型号

ZJD-B

ZJD-A

ZJD-C

信号源

DDS数字合成信号

频率范围

10KHZ-70MHZ

10KHZ-110MHZ

100KHZ-160MHZ

信号源频率覆盖比

7000:1

11000:1

16000:1

采样精度

11BIT

12BIT

信号源频率精度

3×10-5 ±1个字,6位有效数

Q值测量范围

11000自动/手动量程

Q值量程分档

301003001000、自动换档或手动换档

Q分辨率

4位有效数,分辨率0.1

Q测量工作误差

5%

电感测量范围

1nH8.4H,;分辨率0.1

1nH140mH;分辨率0.1

电感测量误差

3%

电容直接测量范围

1pF2.5uF

1pF25uF

调谐电容误差分辨率

±1pF或<1%

主电容调节范围

30540pF

17240pF

谐振点搜索

自动扫描

自身残余电感扣除功能

大电容值直接显示功能

介质损耗直读功能

介质损耗系数精度

万分之一

介质损耗测试范围

0.0001-1

介电常数直读功能

介电常数精度

千分之一

介电常数测试范围

0-1000

LCD显示参数

F,L,C,Q,LT,CT,波段等

准确度

150pF以下±1pF150pF以上±1%

Q合格预置范围

51000声光提示

环境温度

0℃~+40

消耗功率

25W

电源

220V±22V50Hz±2.5Hz

极片尺寸

38mm/50mm(二选一)

极片间距可调范围

15mm

材料测试厚度

0.1-10mm

夹具插头间距

25mm±0.01mm

夹具损耗正切值

4×104 1MHz

测微杆分辨率

0.001mm

测试极片

材料测量直径Φ38mm/50mm,厚度可调   ≥ 15mm

介质损耗测试仪配置清单:

主机一台
电感九只
夹具一套
液体杯一个
电源线一根
数据线一根
说明书一份
合格证一份
保修卡一张

定义解释

介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。也叫介质损失,简称介。在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角功率因数角Φ)的余角δ称为介质损耗角

概念:

电介质在外电场作用下,其内部会有发热现象,这说明有部分电能已转化为热能耗散掉,电介质在电场作用下,在单位时间内因发热而消耗的能量称为电介质的损耗功率,或简称介质损耗(diclectric loss)。介质损耗是应用于交流电场中电介质的重要品质指标之一。介质损耗不但消耗了电能,而且使元件发热影响其正常工作。如果介电损耗较大,甚至会引起介质的过热而绝缘破坏,所以从这种意义上讲,介质损耗越小越好。

形式:

各种不同形式的损耗是综合起作用的。由于介质损耗的原因是多方面的,所以介质损耗的形式也是多种多样的。介电损耗主要有以下形式:

1)漏导损耗

漏导损耗又称电导损耗。实际使用中的绝缘材料都不是完善的理想的电介质,在外电场的作用下,总有一些带电粒子会发生移动而引起微弱的电流,这种微小电流称为漏导电流,漏导电流流经介质时使介质发热而损耗了电能。这种因电导而引起的介质损耗称为漏导损耗。由于实际的电介质总存在一些缺陷,或多或少存在一些带电粒子或空位,因此介质不论在直流电场或交变电场作用下都会发生漏导损耗。

2)极化损耗

在介质发生缓慢极化时(松弛极化、空间电荷极化等),带电粒子在电场力的影响下因克服热运动而引起的能量损耗。

一些介质在电场极化时也会产生损耗,这种损耗一般称极化损耗。位移极化从建立极化到其稳定所需时间很短(约为10-1610-12s),这在无线电频率(5×1012Hz 以下)范围均可认为是极短的,因此基本上不消耗能量。其他缓慢极化(例如松弛极化、空间电荷极化等)在外电场作用下,需经过较长时间(10-10s或更长)才达到稳定状态,因此会引起能量的损耗。

若外加频率较低,介质中所有的极化都能跟上外电场变化,则不产生极化损耗。若外加频率较高时,介质中的极化跟不上外电场变化,于是产生极化损耗。 

3)电离损耗

电离损耗(又称游离损耗)是由气体引起的,含有气孔的固体介质在外加电场强度超过气孔气体电离所需要的电场强度时,由于气体的电离吸收能量而造成指耗,这种损耗称为电离损耗。

4)结构损耗

在高频电场和低温下,有一类与介质内邻结构的紧密度密切相关的介质损耗称为结构损耗。这类损耗与温度关系不大,耗功随频率升高而增大。

试验表明结构紧密的晶体成玻璃体的结构损耗都很小,但是当某此原因(如杂质的掺入、试样经淬火急冷的热处理等)使它的内部结构松散后。其结构耗就会大大升高。

5)宏观结构不均匀性的介质损耗

工程介质材料大多数是不均匀介质。例如陶瓷材料就是如此,它通常包含有晶相、玻璃相和气相,各相在介质中是统计分布口。由于各相的介电性不同,有可能在两相间积聚了较多的自由电荷使介质的电场分布不均匀,造成局部有较高的电场强度而引起了较高的损耗。但作为电介质整体来看,整个电介质的介质损耗必然介于损耗最大的一相和损耗最小的一相之间。

表征:

电介质在恒定电场作用下,介质损耗的功率为

W=U2/R=Ed2S/ρd=σE2Sd

定义单位体积的介质损耗为介质损耗率为

ω=σE2

图片1.png 

D,E,J之间的相位关系

在交变电场作用下,电位移D与电场强度E均变为复数矢量,此时介电常数也变成复数,其虚部就表示了电介质中能量损耗的大小。

如图《DEJ之间的相位关系图》所示,从电路观点来看,电介质中的电流密度为

J=dD/dt=dεE/dt=Jτ+iJe

式中JτE同相位。称为有功电流密度,导致能量损耗;Je,相比较E超前90°,称为无功电流密度。

定义

tanδ=Jτ/Je/εˊ

式中,δ称为损耗角,tanδ称为损耗角正切值。

损耗角正切表示为获得给定的存储电荷要消耗的能量的大小,是电介质作为绝缘材料使用时的重要评价参数。为了减少介质损耗,希望材料具有较小的介电常数和更小的损耗角正切。损耗因素的倒数Q=tanδ-1在高频绝缘应用条件下称为电介质的品质因素,希望它的值要高。

工程材料:

离子晶体的损耗

离子晶体的介质损耗与其结构的紧密程度有关。

紧密结构的晶体离子都排列很有规则,键强度比较大,如α-Al2O3、镁橄榄石晶体等,在外电场作用下很难发生离子松弛极化,只有电子式和离子式的位移极化,所以无极化损耗,仅有的一点损耗是由漏导引起的(包括本质电导和少量杂质引起的杂质电导)。这类晶体的介质损耗功率与频率无关,损耗角正切随频率的升高而降低。因此,以这类晶体为主晶相的陶瓷往往用在高频场合。如刚玉瓷滑石瓷、金红石瓷、镁橄榄石瓷等

结构松散的离子晶体,如莫来石3Al2O3·2SiO2)、董青石(2MgO·2Al2O3·5SiO2)等,其内部有较大的空隙或晶格畸变,含有缺陷和较多的杂质,离子的活动范围扩大。在外电场作用下,晶体中的弱联系离子有可能贯穿电极运动,产生电导打耗。弱联系离子也可能在一定范围内来回运动,形成热离子松弛,出现极化损耗。所以这类晶体的介质损耗较大,由这类品体作主晶相的陶瓷材料不适用于高频,只能应用于低频场合。

玻璃的损耗

复杂玻璃中的介质损耗主要包括三个部分:电导耗、松弛损耗和结构损耗。哪一种损耗占优势,取决于外界因素温度和电场频率。高频和高温下,电导损耗占优势:在高频下,主要的是由弱联系离子在有限范围内移动造成的松弛损耗:在高频和低温下,主要是结构损耗,其损耗机理还不清楚,可能与结构的紧密程度有关。一般来说,简单玻璃的损耗是很小的,这是因为简单玻璃中的分子接近规则的排列,结构紧密,没有弱联系的松弛离子。在纯玻璃中加入碱金属化物后,介质损耗大大增加,并且随着加入量的增大按指数规律增大。这是因为碱性氧化物进入玻璃的点阵结构后,使离子所在处点阵受到破坏,结构变得松散,离子活动性增大,造成电导损耗和松弛损耗增加。

陶瓷材料的损耗

陶瓷材料的介质损耗主要来源于电导损耗、松弛质点的极化损耗和结构损耗。此外,表面气孔吸附水分、油污及灰尘等造成的表面电导也会引起较大的损耗。

在结构紧密的陶瓷中,介质损耗主要来源于玻璃相。为了改善某些陶瓷的工艺性能,往往在配方中引入此易熔物质(如黏土),形成玻璃相,这样就使损耗增大。如滑石瓷、尖晶石瓷随黏土含量增大,介质损耗也增大。因面一般高频瓷,如氧化铝瓷、金红石等很少含有玻璃相。大多数电陶瓷的离子松弛极化损耗较大,主要的原因是:主晶相结构松散,生成了缺固济体、多品型转变等。

高分子材料的损耗

高分子聚合物电介质按单体单元偶极矩的大小可分为极性和非极性两类。一般地,偶极矩在0~0.5D(德拜)范围内的是非极性高聚物;偶极矩在0.5D以上的是极性高聚物。非极性高聚物具有较低的介电常数和介质损耗,其介电常数约为2,介质损耗小于10-4;极性高聚物则具有较高的介电常数和介质损耗,并且极性愈大,这两个值愈高。

高聚物的交联通常能阻碍极性基团的取向,因此热固性高聚物的介电常数和介质损耗均随交联度的提高而下降。酚醛树脂就是典型的例子,虽然这种高聚物的极性很强,但只要固化比较全,它的介质损耗就不高。相反,支化使分子链间作用力减弱,分子链活动能力增强,介电常数和介质损耗均增大。

高聚物的凝聚态结构及力学状态对介电性景响也很大。结品能抑制链段上偶极矩的取向极化,因此高聚物的介质损耗随结晶度升高而下降。当高聚物结晶度大于70%时,链段上的偶极的极化有时全被抑制,介电性能可降至全值,同样的道理,非晶态高聚物在玻璃态下比在高弹态下具有更低的介质损耗。此外,高聚物中的增塑利、杂质等对介电性能也有很大景响。

 


关键词:电位移
在找 介质损耗测试仪 产品的人还在看
返回首页 产品对比

提示

×

*您想获取产品的资料:

以上可多选,勾选其他,可自行输入要求

个人信息:

Copyright gkzhan.com , all rights reserved

智能制造网-工业4.0时代智能制造领域“互联网+”服务平台

对比栏